Structure-based methods in drug discovery have become an integral part of the modern drug discovery process. The power of virtual screening lies in its ability to rapidly and cost-effectively explore enormous chemical spaces to select promising ligands for further experimental investigation. Relative free energy perturbation (RFEP) and similar methods are the gold standard for binding affinity prediction in drug discovery hit-to-lead and lead optimization phases, but have high computational cost and the requirement of a structural analog with a known activity. Without a reference molecule requirement, absolute FEP (AFEP) has, in theory, better accuracy for hit ID, but in practice, the slow throughput is not compatible with VS, where fast docking and unreliable scoring functions are still the standard. Here, we present an integrated workflow to virtually screen large and diverse chemical libraries efficiently, combining active learning with a physics-based scoring function based on a fast absolute free energy perturbation method. We validated the performance of the approach in the ranking of structurally related ligands, virtual screening hit rate enrichment, and active learning chemical space exploration; disclosing the largest reported collection of free energy simulations to date.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360131 | PMC |
http://dx.doi.org/10.1021/acs.jctc.4c00399 | DOI Listing |
PLoS One
January 2025
School of Public Health, Anhui University of Science and Technology, Hefei, China.
A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Department of Chemical Engineering, Hampton University, Hampton, VA 23668, USA.
In this work, we use experimental and theoretical techniques to study the origin of the boosted hydrogen evolution reaction (HER) catalytic activity of two pyridyl-pyrrolidine functionalized C fullerenes. Notably, the mono-(pyridyl-pyrrolidine) penta-adduct of C has exhibited a remarkable HER catalytic activity as a metal-free catalyst, delivering an overpotential () of 75 mV RHE and a very low onset potential of -45 mV RHE. This work addresses fundamental questions about how functionalization on C changes the electron density on fullerene cages for high-performance HER electrocatalysis.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Metal Physics, Russian Academy of Sciences-Ural Division, 620990 Yekaterinburg, Russia.
The crystal and electronic structure of ZrxTi1-xSe2 (0 < x < 1) compounds and their electrical resistivity have been studied in detail for the first time. A combination of soft x-ray spectroscopic methods (XPS, XAS, and ResPES) was used to investigate the electronic structure. The lattice parameters as a function of the metal concentration x obey Vegard's law.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!