Nonlinear photonic crystals with a helical structure in the second-order nonlinear coefficient (χ) are fabricated using infrared femtosecond laser poling in ferroelectric SrBaNbO crystals. The quasi-orbital angular momentum of the helical χ structure can be imprinted on the interacting photons during nonlinear optical processes, allowing the topological charge of the generated photons at new frequencies to be controlled. Here we study the case of a double-helix nonlinear photonic structure for the generation of a second-harmonic vortex beam from a Gaussian pump beam without phase singularity. The conservation law for orbital angular momentum in the second-harmonic process is also verified, with the topological charge of the pump photons being fully compensated by the double-helix structure. The flexible control of light carrying orbital angular momentum (OAM) at new frequencies will find important applications in both classical and quantum photonics, such as nonlinear wavefront shaping and multidimensional entanglement of photons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.532151 | DOI Listing |
Micromachines (Basel)
January 2025
Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.
A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Research Laboratory "Sensor Systems Based on Integrated Photonics Devices", Ufa University of Science and Technology, 32, Z. Validi St., Ufa 450076, Russia.
Radio photonic technologies have emerged as a promising solution for addressing microwave frequency synthesis challenges in current and future communication and sensing systems. One particularly effective approach is the optoelectronic oscillator (OEO), a simple and cost-effective electro-optical system. The OEO can generate microwave signals with low phase noise and high oscillation frequencies, often outperforming traditional electrical methods.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Chemistry, Molecular Basis of Disease, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA.
Donor acceptor (D-π-A) fluorophores containing a donor unit and an acceptor moiety at each end connected by a conjugated linker gained attention in the last decade due to their conjugated system and ease of tunability. These features make them good candidates for various applications such as bioimaging, photovoltaic devices and nonlinear optical materials. Upon excitation of the D-π-A fluorophore, intramolecular charge transfer (ICT) occurs, and it polarizes the molecule resulting in the 'push-pull' system.
View Article and Find Full Text PDFSci Rep
January 2025
Turning Trash to Treasure Laboratory (TTTL), Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq.
The current study used sustainable and green approaches to convey polymer composites with desired optical properties. The extracted green tea dye (GTD) enriched with ligands was used to synthesize zinc metal complexes. Green chitosan biopolymer incorporated with green synthesized metal complex using casting technique was used to deliver polymer composites with improved optical properties.
View Article and Find Full Text PDFSci Adv
January 2025
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.
Artificial nanostructures with ultrafine and deep-subwavelength features have emerged as a paradigm-shifting platform to advanced light-field management, becoming key building blocks for high-performance integrated optoelectronics and flat optics. However, direct optical inspection of integrated chips remains a missing metrology gap that hinders quick feedback between design and fabrications. Here, we demonstrate that photothermal nonlinear scattering microscopy can be used for direct imaging and resolving of integrated optoelectronic chips beyond the diffraction limit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!