Fringe projection profilometry (FPP) faces significant challenges regarding calibration difficulty and stitching error accumulation when operating across scenes ranging from tens to hundreds of meters. This Letter presents a calibration-free 3D measurement method by integrating a binocular vision of a FPP scanner with a wide field-of-view (FoV) vision that constructs global benchmarks to unify local 3D scanning and global 3D stitching, which is adaptable to arbitrarily large-scale scenes. A posterior global optimization model is then established to determine the reconstruction parameters and stitching poses simultaneously at each scanning node with adaptively distributed benchmarks. Consequently, the integrated vision measurement system not only eliminates the large-scale pre-calibration and stitching error accumulation but also overcomes system structural instability during moving measurement. With the proposed method, we achieved 3D measurements with an accuracy of 0.25 mm and a density of 0.5 mm for over 50-m-long scenes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.532887DOI Listing

Publication Analysis

Top Keywords

fringe projection
8
stitching error
8
error accumulation
8
large-scale-adaptive fringe
4
measurement
4
projection measurement
4
measurement fringe
4
projection profilometry
4
profilometry fpp
4
fpp faces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!