A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved Conductance Blockage Modeling of Cylindrical Nanopores, from 2D to Thick Membranes. | LitMetric

The ionic current blockage from a nanopore sensor is a fundamental metric for characterizing its dimensions and identifying molecules translocating through it. Yet, most analytical models predicting the conductance of a nanopore in both open and obstructed states remain inaccurate. Here, using an oblate spheroidal coordinate framework to study the electrical response of nanopore access regions, we reveal that the widely used model from Kowalczyk et al. significantly overestimates access region contributions when blocked by a cylindrical object, like DNA. To address this, we present an improved analytical model for the obstructed access resistance, which we establish as highly accurate through finite-element simulations, especially for ultrathin membranes and long narrow channels. Equipped with an improved nanopore conductance model, this work provides tools for more accurate calculation of the pore size and for the expected blockade from DNA, of high practical value for many biosensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c02538DOI Listing

Publication Analysis

Top Keywords

improved conductance
4
conductance blockage
4
blockage modeling
4
modeling cylindrical
4
cylindrical nanopores
4
nanopores thick
4
thick membranes
4
membranes ionic
4
ionic current
4
current blockage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!