Objectives: For critically ill patients with acute severe brain injuries, consciousness may reemerge before behavioral responsiveness. The phenomenon of covert consciousness (i.e., cognitive motor dissociation) may be detected by advanced neurotechnologies such as task-based functional MRI (fMRI) and electroencephalography (EEG) in patients who appear unresponsive on the bedside behavioral examination. In this narrative review, we summarize the state-of-the-science in ICU detection of covert consciousness. Further, we consider the prognostic and therapeutic implications of diagnosing covert consciousness in the ICU, as well as its potential to inform discussions about continuation of life-sustaining therapy for patients with severe brain injuries.
Data Sources: We reviewed salient medical literature regarding covert consciousness.
Study Selection: We included clinical studies investigating the diagnostic performance characteristics and prognostic utility of advanced neurotechnologies such as task-based fMRI and EEG. We focus on clinical guidelines, professional society scientific statements, and neuroethical analyses pertaining to the implementation of advanced neurotechnologies in the ICU to detect covert consciousness.
Data Extraction And Data Synthesis: We extracted study results, guideline recommendations, and society scientific statement recommendations regarding the diagnostic, prognostic, and therapeutic relevance of covert consciousness to the clinical care of ICU patients with severe brain injuries.
Conclusions: Emerging evidence indicates that covert consciousness is present in approximately 15-20% of ICU patients who appear unresponsive on behavioral examination. Covert consciousness may be detected in patients with traumatic and nontraumatic brain injuries, including patients whose behavioral examination suggests a comatose state. The presence of covert consciousness in the ICU may predict the pace and extent of long-term functional recovery. Professional society guidelines now recommend assessment of covert consciousness using task-based fMRI and EEG. However, the clinical criteria for patient selection for such investigations are uncertain and global access to advanced neurotechnologies is limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/CCM.0000000000006372 | DOI Listing |
Intensive Care Med
January 2025
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Brain Commun
December 2024
Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, 1011 Lausanne, Switzerland.
A key question for the scientific study of consciousness is whether it is possible to identify specific features in brain activity that are uniquely linked to conscious experience. This question has important implications for the development of markers to detect covert consciousness in unresponsive patients. In this regard, many studies have focused on investigating the neural response to complex auditory regularities.
View Article and Find Full Text PDFJ Neurol
January 2025
Western Institute of Neuroscience, Western University, London, Canada.
Background: Repeat neurological assessment is standard in cases of severe acute brain injury. However, conventional measures rely on overt behavior. Unfortunately, behavioral responses may be difficult or impossible for some patients.
View Article and Find Full Text PDFCamb Q Healthc Ethics
January 2025
Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA.
Studies have shown that some covertly conscious brain-injured patients, who are behaviorally unresponsive, can reply to simple questions via neuronal responses. Given the possibility of such neuronal responses, Andrew Peterson et al. have argued that there is warrant for some covertly conscious patients being included in low-stakes medical decisions using neuronal responses, which could protect and enhance their autonomy.
View Article and Find Full Text PDFJ Rehabil Med
January 2025
Department of Clinical Sciences, Division of Rehabilitation Medicine, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden; Department of Rehabilitation Medicine, Danderyd Hospital, Stockholm, Sweden.
Objective: To investigate if eye tracking can support detection of covert voluntary eye movements and to compare these findings with a simultaneously performed clinical assessment according to the Coma Recovery Scale manual regarding visual stimuli.
Design: Observational case series.
Subjects: Twelve outpatients with prolonged disorders of consciousness recruited from the rehabilitation clinic of a regional rehabilitation unit.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!