Polar magneto-optical Kerr effect spectroscopy with a microscope arrangement for studies on 2D materials.

Rev Sci Instrum

Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India.

Published: August 2024

We describe a setup for magneto-optical Kerr effect (MOKE) spectroscopy suitable for Kerr rotation (ϕ) and ellipticity (η) measurement on microscopic samples, such as flakes of two-dimensional materials. A spatial resolution of ∼25μm, limited by the demagnified monochromator exit slit image, was achieved. The use of mirrors allows for measurement in polar MOKE geometry with a conventional electro-magnet, without requiring holes in the magnet pole pieces. The microscope-like optics also has a 90° twisted periscope arrangement of two mirrors that helps transport light without change in its circular polarization state. A Jones matrix analysis of the setup brings out the influence of the beam-splitter on the measured signals. Its correction requires the ellipsometry parameters of the beam-splitter in transmission mode, which were measured separately. The working of the setup is tested by measuring the ϕ and η spectra of 2H-WS2 flakes at low temperature, verifying them using Kramers-Kronig analysis and extracting the Landé g-factor of the ground state exciton from them.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0209323DOI Listing

Publication Analysis

Top Keywords

magneto-optical kerr
8
polar magneto-optical
4
kerr spectroscopy
4
spectroscopy microscope
4
microscope arrangement
4
arrangement studies
4
studies materials
4
materials describe
4
describe setup
4
setup magneto-optical
4

Similar Publications

In this Letter, we calculate the optical and magneto-optical reflectivity in a dielectric/gap/ferromagnet excited by a -polarized monochromatic optical beam through the prism (Otto configuration) as a function of the angle of incidence and the gap thickness . Besides the well-known surface plasmon polariton (SPP resonance at  ∼ ), we find a new, to the best of our knowledge, resonance with a nanometric gap  ∼ 10 nm at a large  ∼ 80°. Both resonances display pronounced resonant behavior in the transverse magneto-optical Kerr effect (T-MOKE).

View Article and Find Full Text PDF

Thin (~50 nm thick) BaM hexaferrite (BaFeO) films were grown on (1-102) and (0001) cut α-AlO (sapphire) substrates via laser molecular beam epitaxy using a one- or two-stage growth protocol. The advantages of a two-stage protocol are shown. The surface morphology, structural and magnetic properties of films were studied using atomic force microscopy, reflected high-energy electron diffraction, three-dimensional X-ray diffraction reciprocal space mapping, powder X-ray diffraction, magneto-optical, and magnetometric methods.

View Article and Find Full Text PDF

Magnetic skyrmions, topologically stabilized chiral spin textures in magnetic thin films, have garnered considerable interest due to their efficient manipulation and resulting potential as efficient nanoscale information carriers. One intriguing approach to address the challenge of tuning skyrmion properties involves using chiral molecules. Chiral molecules can locally manipulate magnetic properties by inducing magnetization through spin exchange interactions and by creating spin currents.

View Article and Find Full Text PDF

We present a magneto-optical Kerr effect (MOKE) spectrometer based on a modified Martin-Puplett interferometer, utilizing continuous wave sub-THz low-power radiation in a broad frequency range. This spectrometer is capable of measuring the frequency dependence of the MOKE response function, both the Kerr rotation and ellipticity, simultaneously, with accuracy limited by a sub-milliradian threshold, without the need for a reference measurement. The instrument's versatility allows it to be coupled to a cryostat with optical windows, enabling studies of a variety of quantum materials such as unconventional superconductors, two-dimensional electron gas systems, quantum magnets, and other systems showing optical Hall response at sub-Kelvin temperatures and in high magnetic fields.

View Article and Find Full Text PDF

The magneto-optical Kerr effect (MOKE), as one of the magneto-optical effects, exhibits polarization change upon reflection that can be used to explore the internal information of magnetic materials with broad applications in modern information technology. However, typically, MOKE is quite weak due to the lower magneto-optical interaction. To tremendously enhance the MOKE, quasi-bound states in the continuum in a one-dimensional Ce- doped YFeO (CeYIG) film photonic crystal slabs (PCS) are proposed to improve the magneto-optical interaction in this work.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!