Phase and group speeds of airborne surface waves over porous layers and periodically rough hard surfaces.

J Acoust Soc Am

School of Engineering and Innovation, The Open University, Milton Keynes, Bucks, MK76AA, United Kingdom.

Published: August 2024

Sound fields above porous layers or rough acoustically hard boundaries may include airborne surface waves. The surface wave properties depend on the effective surface admittance. Analytical expressions for surface wave speeds are derived from models for the acoustical properties of rigid porous media. Surface wave effects on measurements of level difference spectra over porous asphalt are investigated and predictions of phase, group speeds, and vertical attenuation of the surface waves over externally reacting hard backed layers corresponding to a porous asphalt are compared. Predictions of surface wave characteristics above an identical vertical slit medium are compared with data obtained over arrays of parallel aluminum strips on an acoustically hard surface. Group speeds of surface waves over lattices, parallel regularly spaced strips, and snow obtained by numerical differentiation of the phase speed spectra corresponding to admittance spectra deduced from complex excess attenuation are found to compare well with those estimated from time domain data. An effective admittance, deduced from a boundary element method simulation of the excess attenuation spectrum over regularly spaced ribs so that the frequency of the peak corresponds with that in the measured spectrum, is used to estimate the group speed of the associated surface wave.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0028190DOI Listing

Publication Analysis

Top Keywords

surface wave
20
surface waves
16
group speeds
12
surface
11
phase group
8
airborne surface
8
porous layers
8
acoustically hard
8
porous asphalt
8
regularly spaced
8

Similar Publications

Metasurfaces, consisting of subwavelength-thickness units with different wave responses, provide an innovative possible method to manipulate elastic and acoustic waves efficiently. The application of metasurfaces to manipulate on-chip surface acoustic wave (SAW) at sub-GHz frequencies requires further exploration since their wave functions are highly demanded in nanoelectromechanical systems (NEMS), sensing, communications, microfluid control and quantum processing. Here, the experimental realization of on-chip SAW metasurfaces is reported, consisting of gradient submicron niobium (Nb) rectangular pillars positioned on a 128°Y-cut lithium niobate (LiNbO) substrate that operate at hundreds of megahertz.

View Article and Find Full Text PDF

Electromagnetic wave absorption materials that can be utilized for freewill adhering or peeling from the target substrate remain a challenge to be solved. Compared to powder-based slurry and coatings, microwave absorption films possess clear advantages for their good flexibility and machinability. However, the matching thickness and effective bandwidth of 2D microwave absorption films cannot satisfy the current application requirements.

View Article and Find Full Text PDF

This study presents a very thin wideband linear polarization converter in transmission mode with near-unity conversion efficiency. The suggested converter consists of a periodic array on a single-layer substrate, two metallic layers and six vias. Metallic vias connect the upper and lower layers of the construction.

View Article and Find Full Text PDF

On 3 October 2023, a multihazard cascade in the Sikkim Himalaya, India, was triggered by 14.7 million m of frozen lateral moraine collapsing into South Lhonak Lake, generating an ~20 m tsunami-like impact wave, breaching the moraine, and draining ~50 million m of water. The ensuing Glacial Lake Outburst Flood (GLOF) eroded ~270 million m of sediment, which overwhelmed infrastructure, including hydropower installations along the Teesta River.

View Article and Find Full Text PDF

Effective spatio-temporal measurements of water surface elevation (water waves) in laboratory experiments are essential for scientific and engineering research. Existing techniques are often cumbersome, computationally heavy and generally suffer from limited wavenumber/frequency response. To address these challenges a novel method was developed, using polarization filter equipped camera as the main sensor and Machine Learning (ML) algorithms for data processing [1,2].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!