The freezing/melting transition is at the heart of many natural and industrial processes. In the classical picture, the transition proceeds via the nucleation of the new phase, which has to overcome a barrier associated with the free energy cost of the growing nucleus. The total nucleation rate is also influenced by a kinetic factor, which somehow depends on the number of attempts to create a nucleus, that translates into a significant density of proto-nuclei in the system. These transient tiny nuclei are not accessible to experiments, but they can be observed in molecular simulations, and their number and size distributions can be acquired and analyzed. The number distributions are carefully characterized as a function of the system size, showing the expected behavior, with limited spurious effects due to the finite simulation box. It is also shown that the proto-nuclei do exist even in the stable phase, in agreement with the fact that the (unfavorable) volume contribution to their free energy is negligible in the first stages of nucleation. Moreover, the number and size distributions evolve continuously between the stable and the metastable phases, in particular when crossing the coexistence temperature. The size distributions associated with any nucleus and with the largest one have also been calculated, and their relationship recently established for bubbles in a liquid [Puibasset, J. Chem. Phys. 157, 191102 (2022)] has been shown to apply here. This is an important relation for free energy barrier calculations with biased molecular simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0216704DOI Listing

Publication Analysis

Top Keywords

size distributions
16
number size
12
free energy
12
molecular simulations
8
number
5
size
5
distributions
5
statistical analysis
4
analysis stages
4
stages freezing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!