Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The expression level of early growth response 1 (EGR1) is elevated in colon cancer (CC) tissues and is closely associated with poor prognosis in colorectal cancer. However, the role of EGR1 as a transcription factor (TF) influencing cell senescence in the progression of CC remains largely unexplored. This study aims to investigate the impact of curcumin on colorectal cancer cell senescence by modulating EGR1.
Methods: Genes associated with cell senescence were obtained from a public database, and ChIP-X predicted TFs were utilized. The R2 database was employed to examine the relationship between gene expression and survival. CC cell lines were transfected with plasmids to achieve stable expression. Stable transfected cell lines were screened, and changes in RNA and protein expression were assessed using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB) analysis. Senescence levels were measured by SA-β-Gal staining. Cell proliferation and invasion capabilities were evaluated through soft agar and Matrigel invasion assays. Molecular docking was used to predict the interaction between curcumin and EGR1. Gene activity changes were detected using a dual luciferase reporter gene assay.
Results: The results indicated that EGR1 was overexpressed in CC tissues and correlated with poor prognosis. As a TF, EGR1 negatively regulated the expression of telomerase reverse transcriptase (TERT) and sirtuin 6 (SIRT6) genes associated with cell senescence. Knocking down EGR1 increased the rate of cell senescence and inhibited cell proliferation and invasion. Curcumin inhibited the transcriptional activity of EGR1, thereby promoting cell senescence and inhibiting tumor progression.
Conclusions: In conclusion, curcumin hampers the activity of TF EGR1, affecting the transcription and translation of target genes TERT and SIRT6, thus promoting cell senescence and inhibiting CC cell proliferation. These findings provide potential insights for targeted therapy of CC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319940 | PMC |
http://dx.doi.org/10.21037/tcr-24-26 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!