A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Economic analysis of reciprocating engine generating with bio-syngas at predicted maximum power condition. | LitMetric

Economic analysis of reciprocating engine generating with bio-syngas at predicted maximum power condition.

Heliyon

School of Mechanical Engineering, Kanazawa University, Kakuma-machi 1, Kanazawa, Ishikawa, 9201192, Japan.

Published: August 2024

In order to effectively utilize woody biomass, which has a low abundance density, it is necessary to develop a power generation system that can convert it with high efficiency even with a small capacity as less than 2 MW. For electricity generation, it is reasonable to use a small reciprocating engine. In the case of a naturally aspirated spark ignition reciprocating engine (SIRE), the amount of aspirated gas in one cycle is determined almost entirely by the displacement. The thermal efficiency of the SIRE generally increases with the power. Therefore, to improve the thermal efficiency, it is effective to make the low heating value (LHV) of the fuel higher to increase the power of the naturally aspirated SIRE. In this paper, three methods are used to increase the LHV of the bio-syngas: 1) reducing the nitrogen density of the bio-syngas (upgrade bio-syngas), 2) adding hydrogen to the bio-syngas, and 3) adding methane to the bio-syngas. Using these fuels, 1) the conditions for high power, and 2) the costs assumed for each condition, are evaluated through experiments and estimates. The results showed that the upgrade bio-syngas, obtained by gasification with oxygen-enriched air, had the highest power and the best cost-effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320148PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e34338DOI Listing

Publication Analysis

Top Keywords

reciprocating engine
12
naturally aspirated
8
thermal efficiency
8
upgrade bio-syngas
8
bio-syngas adding
8
bio-syngas
7
power
6
economic analysis
4
analysis reciprocating
4
engine generating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!