This study investigates the dynamic characteristics of the dual-mode resonant non-linear Schrodinger equation with a Bhom potential. Hydrodynamics, nonlinear optical fibre communication, elastic media, and plasma physics are just a few of the mathematical physics and engineering applications for this model. The study aims to achieve two main objectives: first, to discuss bifurcation analysis, and second, to extract optical soliton solutions using the extended hyperbolic function method. The study successfully derives various wave solutions, including bright, singular, periodic singular and dark solitons, based on the governing model. The findings conferred in this article show a crucial advancement in understanding the propagation of waves in non-linear media. Additionally, bifurcation of phase portraits of ordinary differential equation consistent with the partial differential equation under consideration is conducted. We also highlight specific constraint conditions that ensure the presence of these obtained solutions. The existing literature shows that these methods are first time applied on this model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320164 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e34416 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!