The Efficiency of Phosphate Removal via Shallow Wastewater Injection into a Saline Carbonate Aquifer.

ACS ES T Water

Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Published: August 2024

Wastewater-derived phosphate contributes to eutrophication if the phosphate is not efficiently removed before it is discharged to surface waters. In the Florida Keys (USA), shallow injection of treated wastewater into saline limestone aquifers is a common mode of wastewater disposal. We assessed the possibility of efficient and permanent phosphate removal following injection at a wastewater treatment facility in Marathon, Florida. The concentrations of nutrients, dissolved ions, and anthropogenic compounds in groundwater and nearshore waters were monitored over two years, as was the progression of a patch of fluorescent dye emplaced by the wastewater injection well. The density contrast between the wastewater effluent and saline groundwater caused the effluent plume to buoy to the shallow subsurface near the injection well. Soluble reactive phosphorus (SRP) and sucralose were both detected in nearshore waters, indicating incomplete removal of contaminants. However, ∼75% of the SRP is removed from the plume in the first 10 days of transit by adsorption followed by a slower removal mechanism, bringing the P removal efficiency above 90%. A positive relationship between excess calcium and phosphate removal efficiency, together with high levels of calcium phosphate mineral supersaturation, supports calcite dissolution followed by calcium phosphate mineralization as this slower removal process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320573PMC
http://dx.doi.org/10.1021/acsestwater.4c00407DOI Listing

Publication Analysis

Top Keywords

phosphate removal
12
calcium phosphate
12
wastewater injection
8
nearshore waters
8
injection well
8
slower removal
8
removal efficiency
8
removal
7
wastewater
6
phosphate
6

Similar Publications

This review summarizes the fundamental concepts, recent advancements, and emerging trends in the field of stimuli-responsive hydrogels. While numerous reviews exist on this topic, the field continues to evolve dynamically, and certain research directions are often overlooked. To address this, we classify stimuli-responsive hydrogels based on their response mechanisms and provide an in-depth discussion of key properties and mechanisms, including swelling kinetics, mechanical properties, and biocompatibility/biodegradability.

View Article and Find Full Text PDF

Evaluation of Sericin/Polyvinyl Alcohol Mixtures for Developing Porous and Stable Structures.

Biomimetics (Basel)

January 2025

Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia.

Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous silk threads, and is typically discarded.

View Article and Find Full Text PDF

Polyelectrolyte nanofiltration membranes for base separation and recovery.

Water Res

January 2025

Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37205, USA; Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37205, USA. Electronic address:

Nanofiltration (NF) membranes have the potential to significantly advance resource recovery efforts where monovalent/divalent ion separation is critical, but their utilization is limited by inadequate stability under extreme conditions. "Base separation"-i.e.

View Article and Find Full Text PDF

Rice (Oryza sativa L.), Poaceae family, forms staple diet of half of world's population, and brinjal (Solanum melongena L.), an important solanaceous crop, are consumed worldwide.

View Article and Find Full Text PDF

The adsorption of phosphate in the collected water is crucial to alleviate the crisis of phosphorus resources, which is in line with the concept of green and sustainable development of resources. In this study, based on the calcium modification technology of pyrolysis combined with chemical modification, a new type of calcium modified coal gangue (CaMCG) was prepared by using coal gangue as raw material and calcium chloride as modifier for the removal of phosphate.The optimum preparation conditions of CaMCG were obtained by response surface test: m:m=1, calcination temperature 735℃, calcination time 135 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!