Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322596 | PMC |
http://dx.doi.org/10.1002/mco2.662 | DOI Listing |
Front Immunol
January 2025
Shanghai Cancer Institute, Shanghai, China.
Introduction: The coronavirus disease 2019 (COVID-19) global pandemic has been the most severe public health emergency since 2019. Currently, the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the most dominant. The most prominent symptom of SARS-CoV-2 infection is respiratory.
View Article and Find Full Text PDFClin Exp Immunol
December 2024
Division of Infection and Immunity and Institute of Immunity and Transplantation, Royal Free Hospital, University College London, UK.
Introduction: Systemic Lupus Erythematosus (SLE) patients exhibit B-cell abnormalities. Although there are concerns about reduced antibody responses to SARS-CoV-2 vaccines, detailed data on B-cell-specific responses in SLE remain scarce. Understanding the responsiveness to novel vaccine-antigens, and boosters number, is important to avoid unnecessary prolonged isolation of immunocompromised individuals.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Veterinary Sciences, AG Immunology, Ludwig-Maximilians-Universität München, Planegg, Germany.
While B cell development in the birds' primary B cell organ, the bursa Fabricius, is relatively well understood, very little is known about post bursal B cell differentiation into plasma and memory cells though these cells are essential for a protecting antibody response and so far, no specific markers for these cells were available. Since immunoglobulin class switch is one part of the B cell differentiation process, our objective was to conduct a first detailed investigation of class-switched chicken B cells. As only very few IgY and IgA expressing cells were detected in lymphoid organs of young chickens, we used CD40L and IL-10 to establish a prolonged culture system, which induces B cell proliferation, class switch to IgY and IgA and enhanced antibody secretion.
View Article and Find Full Text PDFMucosal Immunol
November 2024
Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Comprehensive Cancer Center Zürich, Zürich, Switzerland. Electronic address:
Redox Biol
December 2024
Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, 210042, China; Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!