Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials are of interest for light-emitting applications due to their narrow emission bandwidths and high photoluminescence quantum yields. Whilst there have been numerous examples of multi-resonance molecules exhibiting efficient TADF, the photophysics and mechanism of TADF in multi-resonance emitters have not been investigated to the same extent as the more conventional spatially separated donor-acceptor TADF materials, limiting the development of MR-TADF devices. Here we study the photophysics of a multi-resonance TADF material, OQAO(mes), using transient absorption spectroscopy to spectrally resolve the triplet population(s). We identify multiple triplet populations with distinct spectral contributions, and resolve the dynamics between them. Unlike conventional donor-acceptor TADF materials that have previously been studied, we find these triplet states are not formed in equilibrium, instead exhibiting a slow evolution from a high-energy triplet to a low-energy triplet. Delayed fluorescence predominantly reflects the lifetime of the high-energy triplet state, indicating that the formation of the low-energy triplet is a loss pathway for TADF. We also find that greater amounts of the low-energy triplet are formed in a higher dielectric environment, which leads to less delayed fluorescence. These triplet dynamics have significant implications for TADF in devices, as depending on the identity of the triplet formed by electrical excitation, there will either be a significant barrier to TADF, or a competing nonradiative decay pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318651 | PMC |
http://dx.doi.org/10.1039/d4sc03649b | DOI Listing |
J Phys Chem Lett
December 2024
State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.
Circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials have received widespread attention in recent years, but it remains a formidable challenge to design high-performance CP-MR-TADF emitters concurrently exhibiting high quantum efficiency, narrowband emission, and high dissymmetry factor (). Here, we perform an in-depth theoretical investigation on the CP-MR-TADF materials based on [2.2] paracyclophane (pCp) derivatives.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India.
A Pd (II)-catalyzed direct C3-(sp)-H alkenylation of heteroarenes using benzothiazole as a directing group was successfully achieved. A wide range of 2--alkylpyrroles undergo an oxidative coupling with a variety of acrylates to furnish highly regio- and chemoselective E-alkenylation products at the C3 position. An important intermediate complex has been isolated and characterized so as to have an insight into the mechanism.
View Article and Find Full Text PDFChem Sci
December 2024
National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
Developing dithienylethene (DTE)-based fluorescence switches triggered by biocompatible visible light has always been a long-term goal in view of their potential in numerous biological scenarios. However, their practical availability is severely limited by the short visible light (generally less than 500 nm) required for photocyclization, their inability to achieve red or near-infrared emission, and their short fluorescence lifetimes. Herein, we present a novel DTE derivative featuring a dimethylamine-functionalized BF-curcuminoid moiety (NBDC) by using an "acceptor synergistic conjugation system" strategy.
View Article and Find Full Text PDFOrg Lett
December 2024
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
To experimentally investigate the impact of macrocyclic structures on the nonradiative decay rate constants () of thermally activated delayed fluorescence (TADF), a macrocyclic molecule L-ring and its analogue NL-ring were designed and synthesized. The photophysical measurements reveal their TADF characteristics, and the of the L-ring (4.19 × 10 s) is slower than that of the NL-ring (1.
View Article and Find Full Text PDFInorg Chem
December 2024
College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
Ligand-stabilized metal nanoclusters with atomic precision are considered to be promising materials in the field of light-emitting and harvesting. Among these, nanoclusters with thermally activated delayed fluorescence (TADF) properties are highly sought after. While several gold and silver nanoclusters with TADF properties have been reported in recent years, research on copper counterparts has significantly lagged behind.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!