A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sliding mode tracking control of a class of fractional-order nonstrict-feedback nonlinear systems. | LitMetric

Sliding mode tracking control of a class of fractional-order nonstrict-feedback nonlinear systems.

Nonlinear Dyn

Department of Electrical and Computer Engineering, University of Quebec at Trois-Rivieres, Trois-Rivières, QC Canada.

Published: July 2024

Since the Leibniz rule for integer-order derivatives of the product of functions, which includes a finite number of terms, is not true for fractional-order (FO) derivatives of that, all sliding mode control (SMC) methods introduced in the literature involved a very limited class of FO nonlinear systems. This article presents a solution for the unsolved problem of SMC of a class of FO nonstrict-feedback nonlinear systems with uncertainties. Using the Leibniz rule for the FO derivative of the product of two functions, which includes an infinite number of terms, it is shown that only one of these terms is needed to design a SMC law. Using this point, an algorithm is given to design the controller for reference tracking, that significantly reduces the number of design parameters, compared to the literature. Then, it is proved that the algorithm has a closed-form solution which presents a straightforward tool to the designer to obtain the controller. The solution is applicable to the systems with a mixture of integer-order and FO dynamics. Stability and finite-time convergence of the offered control law are also demonstrated. In the end, the availability of the suggested SMC is illustrated through a numerical example arising from a real system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319397PMC
http://dx.doi.org/10.1007/s11071-024-09789-0DOI Listing

Publication Analysis

Top Keywords

nonlinear systems
12
sliding mode
8
nonstrict-feedback nonlinear
8
leibniz rule
8
product functions
8
functions includes
8
number terms
8
mode tracking
4
tracking control
4
control class
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!