Background: Breast cancer ranks as one of the most prevalent malignancies among women globally, with increasing incidence rates. Physical activity, particularly exercise, has emerged as a potentially significant modifier of cancer prognosis, influencing tumor biology and patient outcomes.

Methods: Using a murine breast cancer model, we established a control and an exercise group, where the latter was subjected to 21 days of voluntary running. RNA Sequencing, bioinformatics analysis, pan-cancer analysis, and cell experiments were performed to validate the underlying mechanisms.

Results: We observed that exercise significantly reduced tumor size and weight, without notable changes in body weight, suggesting that physical activity can modulate tumor dynamics. mRNA sequencing post-exercise revealed substantial downregulation of CD300E in the exercise group, accompanied by alterations in critical pathways such as MicroRNAs in cancers and the Calcium signaling pathway. Expanding our analysis to a broader cancer spectrum, CD300E demonstrated significant expression variability across multiple cancer types, with pronounced upregulation in myeloma, ovarian, lung, and colorectal cancers. This upregulation was correlated with poorer prognostic outcomes, emphasizing CD300E's potential role as a prognostic marker and therapeutic target. Moreover, CD300E expression was associated with cancer cell proliferation and apoptosis.

Conclusion: The study highlights the dual role of exercise in modulating gene expression relevant to tumor growth and the potential of CD300E as a target in cancer therapeutics. Further research is encouraged to explore the mechanisms by which exercise and CD300E influence cancer progression and to develop targeted strategies that could enhance patient outcomes in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321962PMC
http://dx.doi.org/10.3389/fimmu.2024.1437068DOI Listing

Publication Analysis

Top Keywords

cancer
8
breast cancer
8
physical activity
8
exercise group
8
exercise
6
cd300e
5
exercise-downregulated cd300e
4
cd300e acted
4
acted negative
4
negative prognostic
4

Similar Publications

Solitary plasmacytomas are localized single tumors of monoclonal plasma cells that occur in two variants: solitary plasmacytoma of bone and extraosseous plasmacytoma. Solitary plasmacytoma of bone accounts for only 1%-2% of plasma cell lesions, and extraosseous plasmacytoma is also approximately 1%. These are both very uncommon at the skull base.

View Article and Find Full Text PDF

Background: Central venous access devices (CVAD) are widely used in patient care, providing an essential, reliable pathway for patients to receive chemotherapy, long-term infusions, and nutritional support. However, a system of exercise management has not been developed in patients with CVAD.

Purpose: To evaluate and summarize the evidence for management exercise in patients with CVAD and provide guidance for clinical practice.

View Article and Find Full Text PDF

Objectives: Every year, around 300 million surgeries are conducted worldwide, with an estimated 4.2 million deaths occurring within 30 days after surgery. Adequate patient education is crucial, but often falls short due to the stress patients experience before surgery.

View Article and Find Full Text PDF

Background: While recent randomized controlled trials have demonstrated that sublobar resection is non-inferior to lobectomy, the comparative efficacy of these procedures remains uncertain for early-stage non-small cell lung cancer (NSCLC; ≤ 3 cm) exhibiting invasive features postoperatively, such as visceral pleural invasion (VPI) or spread through air spaces (STAS).

Materials And Methods: To identify eligible studies, a comprehensive search of PubMed, Embase, MEDLINE, the Cochrane Library, and Web of Science was conducted through 25 July 2024. Studies were screened according to predefined criteria in accordance with PRISMA guidelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!