Background And Hypothesis: Schizophrenia is associated with white matter disruption and topological reorganization of cortical connectivity but the trajectory of these changes, from the first psychotic episode to established illness, is poorly understood. Current studies in first-episode psychosis (FEP) patients using diffusion magnetic resonance imaging (dMRI) suggest such disruption may be detectable at the onset of psychosis, but specific results vary widely, and few reports have contextualized their findings with direct comparison to young adults with established illness.
Study Design: Diffusion and T1-weighted 7T MR scans were obtained from = 112 individuals (58 with untreated FEP, 17 with established schizophrenia, 37 healthy controls) recruited from London, Ontario. Voxel- and network-based analyses were used to detect changes in diffusion microstructural parameters. Graph theory metrics were used to probe changes in the cortical network hierarchy and to assess the vulnerability of hub regions to disruption. The analysis was replicated with = 111 (57 patients, 54 controls) from the Human Connectome Project-Early Psychosis (HCP-EP) dataset.
Study Results: Widespread microstructural changes were found in people with established illness, but changes in FEP patients were minimal. Unlike the established illness group, no appreciable topological changes in the cortical network were observed in FEP patients. These results were replicated in the early psychosis patients of the HCP-EP datasets, which were indistinguishable from controls in most metrics.
Conclusions: The white matter structural changes observed in established schizophrenia are not a prominent feature in the early stages of this illness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207789 | PMC |
http://dx.doi.org/10.1093/schizbullopen/sgae010 | DOI Listing |
Nat Neurosci
January 2025
McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.
The default mode network (DMN) is implicated in many aspects of complex thought and behavior. Here, we leverage postmortem histology and in vivo neuroimaging to characterize the anatomy of the DMN to better understand its role in information processing and cortical communication. Our results show that the DMN is cytoarchitecturally heterogenous, containing cytoarchitectural types that are variably specialized for unimodal, heteromodal and memory-related processing.
View Article and Find Full Text PDFCell Death Dis
January 2025
Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy.
Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia.
View Article and Find Full Text PDFNeuroimage
January 2025
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan. Electronic address:
The association between the human brain and gut microbiota, known as the "brain-gut-microbiota axis", is involved in the neuropathological mechanisms of schizophrenia (SZ); however, its association patterns and correlations with symptom severity and neurocognition are still largely unknown. In this study, 43 SZ patients and 55 normal controls (NCs) were included, and resting-state functional magnetic resonance imaging (rs-fMRI) and gut microbiota data were acquired for each participant. First, the brain features of brain images and functional brain networks were computed from rs-fMRI data; the gut features of gut microbiota abundance and the gut microbiota network were computed from gut microbiota data.
View Article and Find Full Text PDFNeuron
January 2025
Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA; Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY, USA. Electronic address:
Systems consolidation relies on coordination between hippocampal sharp-wave ripples (SWRs) and neocortical UP/DOWN states during sleep. However, whether this coupling exists across the neocortex and the mechanisms enabling it remains unknown. By combining electrophysiology in mouse hippocampus (HPC) and retrosplenial cortex (RSC) with wide-field imaging of the dorsal neocortex, we found spatially and temporally precise bi-directional hippocampo-neocortical interaction.
View Article and Find Full Text PDFCell Rep Methods
January 2025
Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China. Electronic address:
To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!