A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning-based quantitative morphological study of anteroposterior digital radiographs of the lumbar spine. | LitMetric

Background: Morphological parameters of the lumbar spine are valuable in assessing lumbar spine diseases. However, manual measurement of lumbar morphological parameters is time-consuming. Deep learning has automatic quantitative and qualitative analysis capabilities. To develop a deep learning-based model for the automatic quantitative measurement of morphological parameters from anteroposterior digital radiographs of the lumbar spine and to evaluate its performance.

Methods: This study used 1,368 anteroposterior digital radiographs of the lumbar spine to train a deep learning model to measure the quantitative morphological indicators, including L1 to L5 vertebral body height (VBH) and L1-L2 to L4-L5 intervertebral disc height (IDH). The means of the manual measurements by three radiologists were used as the reference standard. The parameters predicted by the model were analyzed against the manual measurements using paired -tests. Percentage of correct key points (PCK), intra-class correlation coefficient (ICC), Pearson correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and Bland-Altman plots were performed to assess the performance of the model.

Results: Within the 3-mm distance threshold, the model had a PCK range of 99.77-99.46% for the L1 to L4 vertebrae and 77.37% for the L5 vertebrae. Except for VBH-L5 and IDH_L3-L4, IDH_L4-L5 (P<0.05), the estimated values of the model in the remaining parameters were not statistically significant compared with the reference standard (P>0.05). Except for VBH-L5 and IDH_L4-L5, the model showed good correlation and consistency with the reference standard (ICC =0.84-0.96, r=0.85-0.97, MAE =0.5-0.66, RMSE =0.66-0.95). The model outperformed other models (EfficientDet + Unet, EfficientDet + DarkPose, HRNet, and Unet) in predicting landmarks within a distance threshold of 1.5 to 5 mm.

Conclusions: The model developed in this study can automatically measure the morphological parameters of the L1 to L4 vertebrae from anteroposterior digital radiographs of the lumbar spine. Its performance is close to the level of radiologists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320550PMC
http://dx.doi.org/10.21037/qims-22-540DOI Listing

Publication Analysis

Top Keywords

lumbar spine
24
anteroposterior digital
16
digital radiographs
16
radiographs lumbar
16
morphological parameters
16
deep learning-based
8
quantitative morphological
8
deep learning
8
automatic quantitative
8
manual measurements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!