A one-pot domino protocol employing gold(I) catalysis has been developed for the cascade trifluoromethyl-amination/sulfoximination of quinones. Togni I serves as the trifluoromethyl installing precursor, while amine or sulfoximine serves as the aminating source. Preliminary investigations suggest a mutual activation of Togni I and the amine precursor, facilitating the facile difunctionalization of quinones with excellent regioselectivity. Extensive substrate scope exploration demonstrates moderate to good yields of difunctionalized products. Application to the natural product Juglone highlights its potential for late-stage modifications in medicinal chemistry and drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc01891e | DOI Listing |
J Org Chem
January 2025
Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
A convenient and efficient transition-metal-free method has been developed for the C(sp)-H alkoxylation/aryloxylation of 1,4-quinones by direct cross-dehydrogenative coupling with readily available alcohols and phenols in the presence of TEMPO under simple and mild conditions. The method allowed the installation of a wide range of alkoxy/aryloxy groups, exhibited high functional group tolerance, showed a broad substrate scope, afforded good to excellent yields of products in a simple one-pot operation, and could be performed on a gram scale. Mechanistic investigation indicated the involvement of the radical pathway.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, Canada.
-(1,3-Dimethylbutyl)-'-phenyl--phenylenediamine-quinone (6PPD-Q) is a rubber-tire derivative which leaches into surface waters from roadway runoff, from tire particles and has been identified as a possible driver of urban runoff mortality syndrome in coho salmon. Sensitivity to this toxicant is highly variable across fish species and life stages. With environmental concentrations meeting or exceeding toxicity thresholds in sensitive fishes, the potential for ecologically relevant effects is significant.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Jiangsu Longhuan Environmental Science Co. LTD, Changzhou, 213164, China.
A bacterial strain P1, capable of degrading diesel and converting thiosulfate to sulfate was isolated from an oil-contaminated soil sample. The cells were Gram-stain-negative, slightly curved rods and motile with a single polar flagellum. Growth of the strain was observed at 4-45 °C (optimum at 28 °C), at pH 4.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
Unlabelled: Despite the fact that canagliflozin (Cana), a sodium-glucose cotransporter 2 inhibitor, is an anti-diabetic medication with additional effects on the kidney, there is limited experimental data to deliberate its hepato-reno-protective potentiality. Acetaminophen (APAP) overdose remains one of the prominent contributors to hepato-renal damage.
Aim: Our study assessed the novel effect of Cana against APAP-induced toxicities.
Sci Total Environ
January 2025
Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain. Electronic address:
Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!