Muscle and tendon morphology of a world strongman and deadlift champion.

J Appl Physiol (1985)

School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom.

Published: October 2024

This study compared the muscle and tendon morphology of an extraordinarily strong individual, a World's Strongest Man and deadlift champion (WSM), with that of various other athletic, trained, and untrained populations. The WSM completed the following: ) 3.0-T MRI scans, to determine the volume of 22 individual lower limb muscles, 5 functional muscle groups, patellar tendon (PT) cross-sectional area (CSA), and PT moment arm; and ) countermovement jumps (CMJ) and isometric midthigh pull (IMTP) contractions. The WSM was compared with previously assessed groups from our laboratory (muscle and tendon) and the wider research literature (CMJ and IMTP). The WSM's CMJ peak power (9,866 W) and gross (9,171 N) and net (7,480 N) IMTP peak forces were higher than any previously published values. The WSM's overall measured leg muscle volume was approximately twice that of untrained controls (+96%) but with pronounced anatomical variability in the extent of muscular development. The plantar flexor group (+120%) and the guy rope muscles (sartorius, gracilis, and semitendinosus: +140% to +202%), which stabilize the pelvis and femur, demonstrated the largest differences relative to that of untrained controls. The WSM's pronounced quadriceps size (greater than or equal to twofold vs. untrained) was accompanied by modest PT moment arm differences and, notably, was not matched by an equivalent difference in PT CSA (+30%). These results provide novel insight into the musculotendinous characteristics of an extraordinarily strong individual, which may be toward the upper limit of human variation, such that the WSM's very pronounced lower limb muscularity also exhibited distinct anatomical variability and with muscle size largely uncoupled from tendon size. Lower-body muscle size of an extraordinarily strong individual, a World's Strongest Man and deadlift champion (WSM), was approximately twice that of controls but was underpinned by pronounced anatomical variability in the extent of muscular development (+23-202%): the plantar flexor group and guy rope muscles demonstrating the largest differences. The WSM's quadriceps size (more than or equal to twice that of controls) contrasted with modest differences in patella tendon moment arm (+18%) and was uncoupled from patellar tendon size (+30%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486472PMC
http://dx.doi.org/10.1152/japplphysiol.00342.2024DOI Listing

Publication Analysis

Top Keywords

muscle tendon
12
deadlift champion
12
extraordinarily strong
12
strong individual
12
moment arm
12
anatomical variability
12
tendon morphology
8
individual world's
8
world's strongest
8
strongest man
8

Similar Publications

Motion mapping and positioning of lumbrical muscles in the carpal tunnel-a cadaveric study.

J Orthop

July 2025

Department of Hand Surgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Aims And Objectives: Dynamic incursion of lumbrical muscle proximal to the distal edge of transverse carpal ligament (TCL) has been long debated for its role in causing median nerve compression in the carpal tunnel. This study aims to evaluate the pattern of lumbrical incursion into the carpal tunnel in various finger positions and determine their extent of presence and relationship with respect to the TCL and to each other in the carpal tunnel.

Materials & Methods: Dissection of 30 fresh frozen cadaveric hands was done to map the lumbrical muscles.

View Article and Find Full Text PDF

Background: Rotator cuff repairs may fail because of compromised blood supply, suture anchor pullout, or poor fixation to bone. To augment the repairs and promote healing of the tears, orthobiologics, such a platelet-rich plasma (PRP), and biologic scaffolds have been applied with mixed results. Adipose allograft matrix (AAM), which recruits native cells to damaged tissues, may also be a potential treatment for rotator cuff tears.

View Article and Find Full Text PDF

Background: Biomechanical studies suggest that the triceps brachii muscle generates resistive force against valgus stress on the elbow during baseball pitching. However, given the parallel fiber orientation in the distal tendinous structure of the triceps brachii, the mechanism behind this anti-valgus force remains unclear. In the present study, we aimed to examine the anatomy of the distal tendinous structure of the triceps brachii using bony morphological, macroscopic, and histological methods.

View Article and Find Full Text PDF

Background: The gluteus medius and minimus muscles play a critical role in hip biomechanics, however there is a paucity of literature examining the impact of preoperative gluteal pathology on outcomes following total hip arthroplasty (THA). This study compared pain, satisfaction, and functional outcomes among patients who had and did not have preoperative gluteal pathology after direct anterior (DA) THA.

Methods: Using an institutional total joint registry, patients undergoing DA THA for osteoarthritis between 2010 and 2022 were retrospectively reviewed.

View Article and Find Full Text PDF

Background: Iliopsoas injuries are a common cause of anterior hip and groin pain and can be successfully managed with conservative treatment. Corticosteroid and local anesthetic injections can also be offered in conjunction with nonoperative management. Given the variability in reported injection guidelines, composition, and techniques, the purpose of this study was to systematically review the literature to assess progression to surgery and patient outcomes following iliopsoas injections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!