Download full-text PDF

Source
http://dx.doi.org/10.1080/03014460.2024.2379900DOI Listing

Publication Analysis

Top Keywords

bitter? knowns
4
knowns unknowns
4
unknowns genetics
4
genetics phenylthiocarbamide
4
phenylthiocarbamide perception
4
bitter?
1
unknowns
1
genetics
1
phenylthiocarbamide
1
perception
1

Similar Publications

Packaging films based on natural biopolymers often suffer from inadequate barrier and mechanical properties. To address these challenges, multilayer films have emerged as potential solutions. In this study, we prepared bilayer films using bitter vetch seed protein (BVSP) and polylactic acid (PLA).

View Article and Find Full Text PDF

The TRP Channels Serving as Chemical-to-Electrical Signal Converter.

Physiol Rev

January 2025

Department of Physiology and Membrane Biology, University of California, Davis, School of Medicine, Davis CA, 95616, USA.

Biology uses many signaling mechanisms. Among them, calcium and membrane potential are two prominent mediators for cellular signaling. TRPM4 and TRPM5, two calcium-activated monovalent cation-conducting ion channels, offer a direct linkage between these two signals.

View Article and Find Full Text PDF

(Hua) Engl. ex K. Krause, locally known as (bitter greens) or , is a widely consumed wild vegetable and traditional herbal medicine in western Yunnan.

View Article and Find Full Text PDF

Enhancement of health beneficial bioactivities of bitter melon (Momordica charantia L.) by puffing.

Food Chem

January 2025

Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea. Electronic address:

Effects of puffing and extraction method on physical and biological efficacy of bitter melon was investigated. Puffing increased the Maillard reaction products, extraction yield, total phenolic and total flavonoid contents. Antioxidant activity was the highest at 980 kPa, but there was no significant difference between two extraction methods.

View Article and Find Full Text PDF

Exogenous melatonin enhances heat tolerance in buckwheat seedlings by modulating physiological response mechanisms.

Plant Physiol Biochem

January 2025

Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-la-Neuve, Belgium.

Melatonin (MT) serves as a potent antioxidant in plant organisms, bolstering their resilience to temperature stress. In this study, the impact of MT on various buckwheat varieties under high-temperature stress conditions (40 °C) was investigated. Specifically, five buckwheat seedling varieties, comprising three sweet buckwheat variants (Fagopyrum esculentum) and two bitter buckwheat types (Fagopyrum tataricum), were subjected to foliar sprays of melatonin at concentrations of 50, 100 and 200 μM, with water at 25 °C employed as a control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!