Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Since in the cancer setting, tumor cells may use cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to evade the immune system. This study aimed to identify CTLA-4-related long non-coding RNAs (lncRNAs) and assess their roles in lung adenocarcinoma (LUAD) development.
Methods: Clinical and genomic data were obtained from The Cancer Genome Atlas (TCGA), MSigDB and Gene Weaver. CTLA-4-related lncRNA-based gene signatures (CTLA4LncSigs) were identified using Cox regression, establishing a risk score model and an independent prognostic model. Enrichment analysis (GO/KEGG) was performed. Mendelian randomization (MR) analysis investigated the nitrogen metabolism and lung cancer relationship, with Bayesian weighted MR (BWMR) addressing uncertainties. Correlations with tumor microenvironment and drug sensitivity were explored.
Results: Nineteen CTLA4LncSigs significantly influenced LUAD prognosis. The risk score demonstrated independence as a prognostic factor. Functional analysis revealed lncRNAs' impact on nitrogen metabolism. MR and BWMR confirmed the protective role of the nitrogen metabolism pathway in lung cancer.
Conclusion: Our study identifies CTLA-4-related lncRNAs associated with LUAD prognosis and uncovers a previously undiscovered protective role of the nitrogen metabolism pathway in combating LUAD development, providing new insights into potential therapeutic targets and prognostic biomarkers for this aggressive cancer subtype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323378 | PMC |
http://dx.doi.org/10.1186/s12885-024-12777-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!