A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Holistic Analysis of Alzheimer's Disease-Associated lncRNA Communities Reveals Enhanced lncRNA-miRNA-RBP Regulatory Triad Formation Within Functionally Segregated Clusters. | LitMetric

Recent studies on the regulatory networks implicated in Alzheimer's disease (AD) evince long non-coding RNAs (lncRNAs) as crucial regulatory players, albeit a poor understanding of the mechanism. Analyzing differential gene expression in the RNA-seq data from the post-mortem AD brain hippocampus, we categorized a list of AD-dysregulated lncRNA transcripts into functionally similar communities based on their k-mer profiles. Using machine-learning-based algorithms, their subcellular localizations were mapped. We further explored the functional relevance of each community through AD-dysregulated miRNA, RNA-binding protein (RBP) interactors, and pathway enrichment analyses. Further investigation of the miRNA-lncRNA and RBP-lncRNA networks from each community revealed the top RBPs, miRNAs, and lncRNAs for each cluster. The experimental validation community yielded ELAVL4 and miR-16-5p as the predominant RBP and miRNA, respectively. Five lncRNAs emerged as the top-ranking candidates from the RBP/miRNA-lncRNA networks. Further analyses of these networks revealed the presence of multiple regulatory triads where the RBP-lncRNA interactions could be augmented by the enhanced miRNA-lncRNA interactions. Our results advance the understanding of the mechanism of lncRNA-mediated AD regulation through their interacting partners and demonstrate how these functionally segregated but overlapping regulatory networks can modulate the disease holistically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324768PMC
http://dx.doi.org/10.1007/s12031-024-02244-0DOI Listing

Publication Analysis

Top Keywords

functionally segregated
8
regulatory networks
8
understanding mechanism
8
regulatory
5
networks
5
holistic analysis
4
analysis alzheimer's
4
alzheimer's disease-associated
4
disease-associated lncrna
4
lncrna communities
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!