Accumulating evidence suggests that aggression and rule-breaking may have distinct origins. However, grouping these heterogeneous behaviors into a single dimension labelled Conduct Problems (CP) has become the norm rather than the exception. Yet, the neurobiological features that differentiate aggression and rule-breaking remain largely unexplored. Using a large sample of children and adolescents (n = 1360, 6-18 years old), we examined the common and specific brain activity between CP, aggression, and rule-breaking behaviors. Analyses were conducted using fMRI resting-state data from a 10-minute session to explore the correlations between low frequency fluctuations and both broad and fine-grained CP dimensions. The broad CP dimension was associated with deficits in the precentral gyrus, superior temporal gyrus, and tempo-parietal junction. However, only the superior temporal gyrus was shared between aggression and rule-breaking. Activity of the precentral gyrus was mainly associated with rule-breaking, and the temporo-parietal cortex with aggression. More importantly, voxel-wise analyses on fine-grained dimensions revealed additional specific effects that were initially obscured when using a broad CP dimension. Finally, we showed that the findings specific to aggression and rule-breaking may be related to distinct brain networks and mental functions, especially ventral attention/sensorimotor processes and default mode network/social cognitions, respectively. The current study highlights that aggression and rule-breaking may be related to distinct local and distributed neurobiological markers. Overall, using fine-grained dimensions may provide a clearer picture of the role of neurobiological correlates in CP and their invariance across measurement levels. We advocate for adopting a more thorough examination of the lumping/splitting effect across neuroimaging studies on CP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00787-024-02557-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!