A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Free-standing millimeter-range 3D waveguides for on-chip optical interconnects. | LitMetric

Free-standing millimeter-range 3D waveguides for on-chip optical interconnects.

Sci Rep

INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics Group, Av. Mestre Veiga, s.n., 4715-330, Braga, Portugal.

Published: August 2024

Next-generation energy-efficient photonic integrated systems, such as neuromorphic computational chips require efficient heterogeneous integration of ultracompact light sources and photodetectors through highly dense waveguide circuits. However, interconnecting these devices in emitter-receiver communication circuits remains a challenge and an obstacle towards upscaling heterogeneous photonic chips. Here we report on versatile air-cladded free-standing 3D polymer waveguides (OrmoCore, n≈1.5) spanning up to 900 µm in length without intermediate mechanical support structures, microprinted via two-photon polymerization. The presented waveguides are suitable for on-chip out-of-plane light coupling as well as non-connected 3D crossings, needed for high density optical circuits. The waveguides show optical transmission losses of 1.93 dB mm at λ = 635 nm, and of 3.71 dB mm at λ = 830 nm in the wavelength range of GaAs-based microLEDs spectral emission. On-chip imaging for high-precision alignment and TPP microfabrication are performed seamlessly by utilizing the same laser source for both steps, allowing accurate 3D printing on microstructured substrates. As proof of concept, we interconnect two GaAs-based microLEDs via an on-chip microprinted 3D waveguide. Such combined systems can serve as building blocks of future complex integrated heterogeneous photonic networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324902PMC
http://dx.doi.org/10.1038/s41598-024-69522-0DOI Listing

Publication Analysis

Top Keywords

heterogeneous photonic
8
gaas-based microleds
8
free-standing millimeter-range
4
waveguides
4
millimeter-range waveguides
4
on-chip
4
waveguides on-chip
4
on-chip optical
4
optical interconnects
4
interconnects next-generation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!