Abrus cantoniensis Polysaccharides (ACP) exhibit antioxidant activity and immune-regulatory functions. Abrus cantoniensis Hance widely distributed in the Guangdong and Guangxi regions of China. In this study, this research investigated the impact of phosphorylation modification on the biological activity of ACP, aiming to provide theoretical insights for its development. This research modified ACP through phosphorylation and evaluated changes in its in vitro antioxidant capacity, including free radical scavenging and resistance to cellular oxidative damage. Additionally, this research administered both native ACP and phosphorylated ACP (P-ACP) to mice to assess their protective effects against acute ethanol-induced oxidative injury. This research explored whether these effects were mediated through the Keap1-Nrf2 signaling pathway and their influence on gut microbiota. Results revealed that phosphorylation significantly enhanced ACP's antioxidant capacity and protective effects (p < 0.05). P-ACP improved mice resistance to acute oxidative injury, mitigating the adverse effects of 50 % ethanol (p < 0.05). Moreover, both ACP and P-ACP are involved in modulating the expression of the Keap1-Nrf2 signaling pathway and, to some extent, alter the composition of the gut microbiota in mice. In summary, phosphorylation modification effectively enhances ACP's antioxidant capacity and provides better protection against acute oxidative injury in mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134532 | DOI Listing |
Phytomedicine
December 2024
Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China. Electronic address:
Background: Chronic inflammation is closely related to the occurrence and progression of many cancers, especially colorectal cancer (CRC), which can be triggered by repeated and sustained induction of colitis in mice. CRC is a typical type of cancer that can be caused by inflammation and NLRP3 inflammasome dysregulation plays a certain role in the pathogenesis of CRC.
Purpose: As an edible Chinese medicine, Abrus cantoniensis Hance (ACH) has both anti-inflammatory and anti-tumor activities.
J Ethnopharmacol
January 2025
Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China; International Joint Research Centre on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China. Electronic address:
J Ethnopharmacol
January 2025
School of Pharmacy, Naval Medical University, Shanghai, 200433, China; School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China. Electronic address:
Ethnopharmacological Relevance: The herb of Abrus cantoniensis Hance (AC) is an important Traditional Chinese Medicine (TCM) and is also used as an herbal tea with hepatoprotective action. Soyasaponin Bb is one of the pharmacodynamic substances of AC for the herb's effective pharmacological activity. This study aims to investigate the anti-fibrotic and hepatoprotective activities of soyasaponin Bb in vivo and in vitro experiments, mechanism by network pharmacology and quantification by HPLC.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin 537000, Guangxi, China. Electronic address:
Mitochondrial DNA B Resour
July 2024
Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
The subspecies subsp exhibits pharmacological properties akin to the traditional Chinese medicinal plant ( subsp (Hance) Verdc.). In this report, we unveil the plastid genome of subsp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!