Migration of fluoranthene, phenanthrene, and pyrene in soil environment during the growth of Brassica rapa subsp. chinensis.

Environ Toxicol Pharmacol

Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan.

Published: September 2024

The escalating concern surrounding fluoranthene (FLN), phenanthrene (Phe), and pyrene (Pyr), underscores the urgency to investigate their dynamics in the context of agricultural ecosystems. Brassica rapa subsp. chinensis (Bok choy), a globally consumed vegetable, holds particular significance in this scenario. This study explores the migration and transformation of FLN, Phe, and Pyr from soil to Brassica rapa subsp. chinensis during its growth. The germination rates of seeds in these treatments varied, with soil+Bok choy and soil+FLN+Bok choy treatments showing higher rates (77.8 %), while soil+mix+Bok choy exhibited the lowest rate (11.1 %) after 3 days. Analyzing the distribution of FLN, Phe, and Pyr in Brassica rapa subsp. chinensis parts after 30 days revealed a sequence of accumulation in stem> root> leaf. This study provides information on practical implications for regulating the soil-plant migration and transformation of FLN, Phe, and Pyr, offering valuable insights for migration of PAHs pollution in agricultural settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2024.104535DOI Listing

Publication Analysis

Top Keywords

brassica rapa
16
rapa subsp
16
subsp chinensis
16
fln phe
12
phe pyr
12
migration transformation
8
transformation fln
8
migration
4
migration fluoranthene
4
fluoranthene phenanthrene
4

Similar Publications

The high-altitude, low-pressure, and hypoxia environment poses a significant threat to human health, particularly causing intestinal damage and disrupting gut microbiota. This study investigates the protective effects of Brassica rapa L. crude polysaccharides (BRP) on intestinal damage in mice exposed to hypobaric hypoxic conditions.

View Article and Find Full Text PDF

Petroleum hydrocarbon pollutants in soil are challenging to biodegrade, negatively impacting plant growth as well as the metabolic activity and community structure of soil microorganisms. Microorganisms immobilized by seed carriers can synergistically contribute to the remediation of petroleum hydrocarbon-contaminated soil. We prepared a rape seed carrier with immobilized microorganism by seed coating (with a mixture of diatomaceous earth and bentonite as fillers) and microbial immobilization.

View Article and Find Full Text PDF

Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various abiotic stress responses. However, their evolutionary mechanism of freezing tolerance remains poorly understood. In our previous transcriptomics study based on DNA methylation sequencing, the BnaHsfA2 was found to be significantly accumulated in winter rapeseed (Brassica rapa L.

View Article and Find Full Text PDF

BrSWEET11 accelerated Arabidopsis thaliana flowering, while silencing Brsweet11 in Brassica rapa delayed flowering relative to controls. BrSWEET11 is involved in sucrose transport after being induced by long-day conditions. SWEETs (Sugars Will Eventually Be Exported Transporters) are sugar outflow transporters that may participate in the regulation of plant flowering.

View Article and Find Full Text PDF

Background: The modification of protein substrates by small ubiquitin-related modifier (SUMO) plays a vital role in plants subjected to biotic and abiotic stresses. However, its role in the stress responses of Brassica plants remains poorly understood.

Results: A genome-wide analysis revealed the presence of 30 SUMOylation genes in the Caixin genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!