A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selenate simultaneously alleviated cadmium and arsenic accumulation in rice (Oryza sativa L.) via regulating transport genes. | LitMetric

Selenate simultaneously alleviated cadmium and arsenic accumulation in rice (Oryza sativa L.) via regulating transport genes.

Environ Pollut

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China. Electronic address:

Published: October 2024

Cadmium (Cd) and arsenic (As) have contrasting biogeochemical behaviors in paddy soil, which posed an obstacle for reducing their accumulation in rice (Oryza sativa L.) simultaneously. In this study, selenate exhibited a more effective ability than selenite on simultaneous alleviation of Cd and As accumulation in rice under Cd-As co-exposure, and the mechanisms need to be further investigated. The results showed that selenate significantly decreased the root Cd and As contents by 59%-83% and 43%-72% compared to Cd-As compound exposure, respectively. Correspondingly, it significantly down-regulated the expression of uptake-related genes OsNramp5 (87.1%) and OsLsi1 (95.5%) in rice roots. Decreases in Cd (64.5%) and As (16.2%) contents in shoots were also found after selenate addition. Moreover, selenate may promoted the reduction of As(V) to As(Ⅲ) and As(III) efflux to the external medium, resulting in decreased As accumulation and As(Ⅲ) proportion in rice shoots and roots. In addition, selenate could promote the binding of Cd (by 14%-24%) and As (by 9%-15%) in the cell wall, and significantly reduced the oxidative stress by elevating levels of antioxidant enzymes (by 10%-105%) and thiol compounds (by 6%-210%). Additionally, selenate significantly down-regulated the expression of OsNramp1 (49.3%) and OsLsi2 (82.1%) associated with Cd and As transport in rice. These findings suggest selenate has the potential to be an effective material for the simultaneous reduction of Cd and As accumulation in rice under Cd-As co-contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124725DOI Listing

Publication Analysis

Top Keywords

accumulation rice
16
selenate
8
cadmium arsenic
8
rice oryza
8
oryza sativa
8
rice cd-as
8
down-regulated expression
8
addition selenate
8
rice
7
accumulation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!