This study uncovered the response of novel micro-granule wastewater treatment technology to different powder carrier materials. Characteristics and distinctions among different systems were assessed based on process performance, sludge aggregation capacity, and microbial metabolism. Zeolite carrier system exhibited remarkable nitrogen removal efficiency of 89.6 ± 0.9 %, while diatomite carriers, in conjunction with intermittent aeration, enhanced simultaneous nitrification and denitrification from 2.6 % to 27.1 %. Iron-based carriers demonstrated efficient phosphorus removal (94.7 ± 1.2 %) through both chemical and microbial pathways. Specific surface area, pore structure and biocompatibility of powder carriers determined the formation and size of micro-granules. Tryptophan-like substances, C-(C/H), and N in extracellular polymeric substances strongly correlated with sludge hydrophobicity and granulation. Significant enrichment in norank_Comamonadaceae and Nitrosomonas in zeolite powder carrier system promoted partial nitrification and endogenous denitrification. Differences in metabolic pathways elucidated the up-regulation of amino acid synthesis, energy metabolism, and membrane transport as potential mechanisms driving micro-granule formation and efficient treatment performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131268 | DOI Listing |
Phys Chem Chem Phys
January 2025
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
The power conversion efficiency (PCE) of an organic solar cell (OSC) mainly depends on the chemical structures and intrinsic properties of its active layer materials. The development of new nonfullerene acceptors (NFAs) has significantly boosted the PCEs of OSCs over the last decade. Herein, two carbon-oxygen-bridged fused nonacyclic donor units were developed to synthesize two NFAs, namely TTPIC-Ar and iTTPIC-Ar, respectively.
View Article and Find Full Text PDFForensic Sci Int
January 2025
Department of Chemistry Government College University, Lahore, Pakistan. Electronic address:
Skeletal remains are the only source of the genetic material of decomposed organisms or once-lived species. Unlike, soft tissues they are highly mineralized, and their anatomical and morphological structure prevents their deformation in the presence of adverse environmental factors. Therefore, bones and teeth protect the Deoxyribonucleic Acid (DNA) inside them.
View Article and Find Full Text PDFJ Environ Manage
January 2025
GREENMAT, CESAM Research Unit, Institute of Chemistry B6, University of Liège, 4000, Liège, Belgium.
Hydroxyapatite (HA) is known to be the main component of the mineral part of bones. Due to its properties HA is studied for various applications such as bone graft, drug carrier, heterogeneous catalyst or sorbent for waste water treatment. HA can be synthesized or valorized from bone wastes, as the food industry produce billions of kilograms of animal bones.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland.
Introduction: Liquisolid (LS) technology is particularly advantageous for poorly water-soluble drugs administered in very low doses because of the improved dissolution rate and superior content uniformity. However, there is a lack of research papers describing the application of this concept on an industrial scale. Thus, we present trials conducted to develop tablets containing 0.
View Article and Find Full Text PDFPharmaceutics
January 2025
College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!