Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Contemporary hydrological models often oversimplify or neglect the effects of glacier ablation on watershed hydrological processes, leading to inaccurate simulations. To address this issue, we introduce a glacier ablation module that incorporates glacier ablation, sublimation, meltwater refreezing, and snow accumulation, integrated with the fully distributed hydrological model ESSI-3, forming the Glacier-ESSI-3 model. Application of the Glacier-ESSI-3 model in the headwaters of the Yangtze River (HYaR) and Yellow River (HYeR) demonstrates superior accuracy compared to the ESSI-3 model, effectively capturing the impact of glacier ablation on hydrological dynamics. Validation with remotely sensed data of snow cover and glacier dynamics confirms the model's efficacy in reproducing actual conditions in both watersheds. The results indicate that snow meltwater contributes more significantly to runoff than glacier meltwater, and the HYaR exhibiting a larger glacier meltwater contribution than the HYeR. Over time, the contribution rate of snow+glacier meltwater to runoff in the HYaR shows a fluctuating upward trend (10.04 % ± 1.13 % to 25.02 % ± 2.80 %), while it remains relatively stable in the HYeR (6.83 % ± 1.13 % to 10.19 % ± 0.89 %). This study highlights the critical role of glacier ablation in hydrological processes within glacierized watersheds. The Glacier-ESSI-3 model proves to be a robust tool for enhancing hydrological simulations in cold plateau regions, providing valuable insights into the intricate interactions between glaciers and hydrological dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175474 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!