We examine a class of Hamiltonians characterized by interatomic, interorbital even-odd parity hybridization as a model for a family of topological insulators without the need for spin-orbit coupling. Non-trivial properties of these materials are exemplified by studying the topologically-protected edge states of-hybridized alkali and alkaline earth atoms in one and two-dimensional lattices. In 1D the topological features are analogous to the canonical Su-Schrieffer-Heeger model but, remarkably, occur in the absence of dimerization. Alkaline earth chains, with Be standing out due to its gap size and near particle-hole symmetry, are of particular experimental interest since their Fermi energy without doping lies directly at the level of topological edge states. Similar physics is demonstrated to occur in a 2D honeycomb lattice system of-bonded atoms, where dispersive edge states emerge. Lighter elements are predicted using this model to host topological states in contrast to spin-orbit coupling-induced band inversion favoring heavier atoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad6f64 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Science and Technology of China, National Synchrotron Radiation Laboratory, 42#, South Road of HeZuoHua, 230029, Hefei, CHINA.
Fe-N-C catalysts, with a planar D4h symmetric FeN4 structure, show promising as noble metal-free oxygen reduction reaction catalysts. Nonetheless, the highly symmetric structure restricts the effective manipulation of its geometric and electronic structures, impeding further enhancements in oxygen reduction reaction performance. Here, a high proportion of asymmetric edge-carbon was successfully introduced into Fe-N-C catalysts through morphology engineering, enabling the precise modulation of the FeN4 active site.
View Article and Find Full Text PDFJ Biochem
January 2025
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
For bidirectional replication in E. coli, higher-order complexes are formed at the replication origin oriC by the initiator protein DnaA, which locally unwinds the left edge of oriC to promote the loading of two molecules of DnaB onto the unwound region via dynamic interactions with the helicase-loader DnaC and the oriC-bound DnaA complex. One of the two helicases must translocate rightwards through oriC-bound DnaA complex.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
China University of Petroleum East China, State Key Laboratory of Heavy Oil Processing, 66 The Yangtze River West Road, 266580, Qingdao, CHINA.
The production of hydrogen peroxide (H2O2) through two-electron oxygen reduction reaction (2e- ORR) has emerged as a more environmentally friendly alternative to the traditional anthraquinone method. Although oxidized carbon catalysts have intensive developed due to their high selectivity and activity, the yield and conversion rate of H2O2 under high overpotential still limited. The produced H2O2 was rapidly consumed by the increased intensity of H2O2 reduction, which could ascribe to decomposition of peroxide radicals under high voltage in the carbon catalyst.
View Article and Find Full Text PDFNaturwissenschaften
January 2025
Training & Education), Advanced Institute for Wildlife Conservation (Research, Vandalur, Chennai, Tamil Nadu, India.
Eurybiomic big cats are facing significant threats from poaching, which is driven by recreation, taxidermy and wildlife trade. Species identification and age estimation are important for effective conservation management and enforcement of wildlife protection regulations. In this study, we present novel comprehensive morphometric methods for species identification and age estimation in leopards (Panthera pardus fusca) using canine and claw, the major trade articles.
View Article and Find Full Text PDFPLoS One
December 2024
Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.
Coastal wetlands, including freshwater systems near large lakes, rapidly bury carbon, but less is known about how they transport carbon either to marine and lake environments or to the atmosphere as greenhouse gases (GHGs) such as carbon dioxide and methane. This study examines how GHG production and organic matter (OM) mobility in coastal wetland soils vary with the availability of oxygen and other terminal electron acceptors. We also evaluated how OM and redox-sensitive species varied across different size fractions: particulates (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!