Radiation therapy plays a pivotal role in modern cancer treatment, demanding precise and accurate dose delivery to tumor sites while minimizing harm to surrounding healthy tissues. Monte Carlo simulations have emerged as indispensable tools for achieving this precision, offering detailed insights into radiation transport and interaction at the subatomic level. As the use of scintillation and luminescence dosimetry becomes increasingly prevalent in radiation therapy, there arises a need for validated Monte Carlo tools tailored to optical photon transport applications. In this paper, an evaluation process of the TOPAS (TOol for PArticle Simulation) Monte Carlo tool for Cerenkov light generation, optical photon transport and radioluminescence based dosimetry is presented. Three distinct sources of validation data are utilized: one from a published set of experimental results and two others from simulations performed with the Geant4 code. The methodology employed for evaluation includes the selection of benchmark experiments, making use of opt3 and opt4 Geant4 physics models and simulation setup, with observed slight discrepancies within the calculation uncertainties. Additionally, the complexities and challenges associated with modeling optical photons generation through luminescence or Cerenkov radiation and their transport are discussed. The results of our evaluation suggests that TOPAS can be used to reliably predict Cerenkov generation, luminescence phenomenon and the behavior of optical photons in common dosimetry scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/2057-1976/ad6f14 | DOI Listing |
Sci Rep
December 2024
Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.
View Article and Find Full Text PDFSci Rep
December 2024
College of Education, Department of Physics, Misan University, Amarah, Iraq.
This study introduces a high-performance 4-channel Metal-Insulator-Metal (MIM) diplexer, employing silver and Teflon, optimized for advanced photonic applications. The proposed diplexer, configured with two novel band-pass filters (BPFs), operates across four distinct wavelength bands (843 nm, 1090 nm, 1452 nm, 1675 nm) by precisely manipulating the passband dimensions. Utilizing Finite-Difference Time-Domain (FDTD) simulations, the designed diplexer achieves exceptional sensitivity values of 3500 nm/RIU, 4250 nm/RIU, 3375 nm/RIU, and 4003 nm/RIU, along with high figures of merit (FOM) ranging from 113.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electronics, Carleton University, Ottawa, ON, K1S 5B6, Canada.
In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore.
Spatially selective imaging (SSI) involves sampling a group of pixels from different positions on an encoded object to display a decoded image. Here, SSI is achieved by using off-axis cylindrical Fresnel lens arrays to decode multiple images from an encoded print of structural color pixels. Each image is optically retrieved by separately placing different "keys" (arrays of lenses in different pseudorandom configurations) over the same encoded print, and then each image is digitally reconstructed for visualization.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
The outstanding performance of superconducting nanowire single-photon detectors (SNSPDs) has expanded their application areas from quantum technologies to astronomy, space communication, imaging, and LiDAR. As a result, there has been a surge in demand for these devices, that commercial products cannot readily meet. Consequently, more research and development efforts are being directed towards establishing in-house SNSPD manufacturing, leveraging existing nano-fabrication capabilities that can be customized and fine-tuned for specific needs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!