Introduction: The characterization and selection of heart failure (HF) patients for cardiac resynchronization therapy (CRT) remain challenging, with around 30% non-responder rate despite following current guidelines. This study aims to propose a novel hybrid approach, integrating machine-learning and personalized models, to identify explainable phenogroups of HF patients and predict their CRT response.
Methods: The paper proposes the creation of a complete personalized model population based on preoperative CRT patient strain curves. Based on the parameters and features extracted from these personalized models, phenotypes of patients are identified thanks to a clustering algorithm and a random forest classification is provided.
Results: A close match was observed between the 162 experimental and simulated myocardial strain curves, with a mean RMSE of 4.48% (±1.08) for the 162 patients. Five phenogroups of personalized models were identified from the clustering, with response rates ranging from 52% to 94%. The classification results show a mean area under the curves (AUC) of 0.86 ± 0.06 and provided a feature importance analysis with 22 features selected. Results show both regional myocardial contractility (from 22.5% to 33.0%), tissue viability and electrical activation delays importance on CRT response for each HF patient (from 55.8 ms to 88.4 ms).
Discussion: The patient-specific model parameters' analysis provides an explainable interpretation of HF patient phenogroups in relation to physiological mechanisms that seem predictive of the CRT response. These novel combined approaches appear as promising tools to improve understanding of LV mechanical dyssynchrony for HF patient characterization and CRT selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.108986 | DOI Listing |
Sci Rep
December 2024
Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, 98195, USA.
Trigger valves are fundamental features in capillary-driven microfluidic systems that stop fluid at an abrupt geometric expansion and release fluid when there is flow in an orthogonal channel connected to the valve. The concept was originally demonstrated in closed-channel capillary circuits. We show here that trigger valves can be successfully implemented in open channels.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Computer Science and Digital Technologies, University of East London, London, UK.
Nursing activity recognition has immense importance in the development of smart healthcare management and is an extremely challenging area of research in human activity recognition. The main reasons are an extreme class-imbalance problem and intra-class variability depending on both the subject and the recipient. In this paper, we apply a unique two-step feature extraction, coupled with an intermediate feature 'Angle' and a new feature called mean min max sum to render the features robust against intra-class variation.
View Article and Find Full Text PDFSci Rep
December 2024
School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, China.
Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Applied Mathematics, Faculty of Mathematical Science, Ferdowsi University of Mashhad, Mashhad, Iran.
This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!