Dark video human action recognition has a wide range of applications in the real world. General action recognition methods focus on the actor or the action itself, ignoring the dark scene where the action happens, resulting in unsatisfied accuracy in recognition. For dark scenes, the existing two-step action recognition methods are stage complex due to introducing additional augmentation steps, and the one-step pipeline method is not lightweight enough. To address these issues, a one-step Transformer-based method named Dark Domain Shift for Action Recognition (Dark-DSAR) is proposed in this paper, which integrates the tasks of domain migration and classification into a single step and enhances the model's functional coherence with respect to these two tasks, making our Dark-DSAR has low computation but high accuracy. Specifically, the domain shift module (DSM) achieves domain adaption from dark to bright to reduce the number of parameters and the computational cost. Besides, we explore the matching relationship between the input video size and the model, which can further optimize the inference efficiency by removing the redundant information in videos through spatial resolution dropping. Extensive experiments have been conducted on the datasets of ARID1.5, HMDB51-Dark, and UAV-human-night. Results show that the proposed Dark-DSAR obtains the best Top-1 accuracy on ARID1.5 with 89.49%, which is 2.56% higher than the state-of-the-art method, 67.13% and 61.9% on HMDB51-Dark and UAV-human-night, respectively. In addition, ablation experiments reveal that the action classifiers can gain ≥1% in accuracy compared to the original model when equipped with our DSM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.106622 | DOI Listing |
Sensors (Basel)
December 2024
Nokia Bell Labs, 1082 Budapest, Hungary.
Human action recognition using WiFi channel state information (CSI) has gained attention due to its non-intrusive nature and potential applications in healthcare, smart environments, and security. However, the reliability of methods developed for CSI-based action recognition is often contingent on the quality of the datasets and evaluation protocols used. In this paper, we uncovered a critical data leakage issue, which arises from improper data partitioning, in a widely used WiFi CSI benchmark dataset.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Australian Urban Research Infrastructure Network (AURIN), University of Melbourne, Melbourne, VIC 3052, Australia.
Public transportation systems play a vital role in modern cities, but they face growing security challenges, particularly related to incidents of violence. Detecting and responding to violence in real time is crucial for ensuring passenger safety and the smooth operation of these transport networks. To address this issue, we propose an advanced artificial intelligence (AI) solution for identifying unsafe behaviours in public transport.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Integrated Medical Care, Medical University of Bialystok, 15-096 Bialystok, Poland.
: Sudden cardiac arrest (SCA) is a severe medical condition involving the cessation of the heart's mechanical activity. Following the chain of survival, which includes early recognition and calling for help, early initiation of cardiopulmonary resuscitation (CPR), early defibrillation, and post-resuscitation care, offers the greatest chances of saving a person who has experienced SCA. The aim of this study was to analyze cases of out-of-hospital cardiac arrest (OHCA) and assess the actions taken by bystanders.
View Article and Find Full Text PDFLife (Basel)
November 2024
Department of Electronic Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
After a fracture, patients have reduced willingness to bend and extend their elbow joint due to pain, resulting in muscle atrophy, contracture, and stiffness around the elbow. Moreover, this may lead to progressive atrophy of the muscles around the elbow, resulting in permanent functional loss. Currently, a goniometer is used to measure the range of motion, ROM, to evaluate the recovery of the affected limb.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder among children and adolescents. Behavioral detection and analysis play a crucial role in ADHD diagnosis and assessment by objectively quantifying hyperactivity and impulsivity symptoms. Existing video-based action recognition algorithms focus on object or interpersonal interactions, they may overlook ADHD-specific behaviors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!