Low Rh doping accelerated HER/OER bifunctional catalytic activities of nanoflower-like Ni-Co sulfide for greatly boosting overall water splitting.

J Colloid Interface Sci

College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China. Electronic address:

Published: January 2025

AI Article Synopsis

Article Abstract

Facile synthesis of high-efficiency and stable bifunctional electrocatalyst is essential for producing clean hydrogen in energy storage systems. Herein, low Rh-doped flower-like NiS/CoS heterostructures were facilely prepared on porous nickel foam (labeled Rh-NiS/CoS/NF) by a hydrothermal method. The correlation of the precursors types with the morphological structures and catalytic properties were rigorously investigated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in the control groups. The low Rh doping within the catalyst played important role in boosting the catalytic characteristics. The resulting catalyst showed the smaller overpotentials of 197 and 78 mV to drive a current density of 10 mA cm for the OER and HER in alkaline electrolyte, respectively. And the potential only required 1.71 V to drive a current density of 100 mA cm in a water splitting device. It reflects excellent overall water splitting of the home-made Rh-NiS/CoS/NF. This strategy shed some constructive light for preparing transition metal sulfide-based electrocatalysts in water splitting devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.08.050DOI Listing

Publication Analysis

Top Keywords

water splitting
16
low doping
8
evolution reaction
8
drive current
8
current density
8
doping accelerated
4
accelerated her/oer
4
her/oer bifunctional
4
bifunctional catalytic
4
catalytic activities
4

Similar Publications

Modulating the Oxygen Evolution Reaction of Single-Crystal Cobalt Carbonate Hydroxide via Surface Fe Doping and Facet Dependence.

J Phys Chem Lett

January 2025

Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.

View Article and Find Full Text PDF

Optimizing photocatalysis electron spin control.

Chem Soc Rev

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.

Solar-driven photocatalytic technology holds significant potential for addressing energy crisis and mitigating global warming, yet is limited by light absorption, charge separation, and surface reaction kinetics. The past several years has witnessed remarkable progress in optimizing photocatalysis electron spin control. This approach enhances light absorption through energy band tuning, promotes charge separation by spin polarization, and improves surface reaction kinetics strengthening surface interaction and increasing product selectivity.

View Article and Find Full Text PDF

The development of an efficient and durable photoelectrode is critical for achieving large-scale applications in photoelectrochemical water splitting. Here, we report a unique photoelectrode composed of reconfigured gallium nitride nanowire-on-silicon wafer loaded with Au nanoparticles as cocatalyst that achieved an impressive applied bias photon-to-current efficiency of 10.36% under AM 1.

View Article and Find Full Text PDF

Hypothesis: Viscous fingering instabilities of air displacing water displacing mineral oil is controlled by the air injection rate. Given the lower viscosity of the water, air would tend to finger through the water and then after it reaches the oil, proceed to finger through the oil.

Experiments: In a radial Hele-Shaw cell, experiments were conducted on air injection into mineral oil and air injection into a volume of water at the center of the cell which in turn is surrounded by mineral oil.

View Article and Find Full Text PDF

Development of a competent and stable electrocatalyst coupled with photovoltaic system for the generation of green hydrogen, can be a plausible answer to the existing energy crisis. Herein, we have developed Ru doped Ni0.95Se via hydrothermal method as a bifunctional catalyst for overall water splitting coupled with photovoltaic system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!