Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Designing efficient dual-functional catalysts for photocatalytic oxygen reduction to produce hydrogen peroxide (HO) and photodegradation of dye pollutants is challenging. In this work, we designed and fabricated an S-scheme heterojunction (g-CN/ZnO composite photocatalyst) via one-pot calcination of a mixture of ZIF-8 and melamine in the KCl/LiCl molten salt medium. The KCN/ZnO composite produced 4.72 mM of HO within 90 min under illumination (with AM 1.5 filter), which is almost 1.3 and 7.8 times than that produced over KCN and ZnO, respectively. Simultaneously, the KCN/ZnO also showed excellent photodegradation performance for the dye pollutants (Rhodamine B, RhB), with a removal rate of 92 % within 2 h. The apparent degradation rate constant of RhB over KCN/ZnO was approximately 5-8 times that of KCN and ZnO. In the photocatalytic process, photo-generated holes and superoxide radicals are the main active species. Oxygen (O) was mainly reduced to produce HO via a two-electron (2e) pathway with superoxide radicals as intermediates and the 2e oxygen reduction reaction selectivity of KCN/ZnO was close to 69.82 %. Photo-generated holes are mainly responsible for the degradation of RhB. Compared with pure KCN and ZnO, the enhanced photocatalytic activity of the KCN/ZnO composite is mainly attributed to the following aspects: 1) larger specific surface area and pore volume is beneficial to expose more active sites; 2) stronger light harvesting ability and red-shifted absorption edge bestow the compound a stronger light utilization efficiency; 3) the construction of S-scheme heterostructure between KCN and ZnO improve the photogenerated electron-hole pairs separation ability and bestow photogenerated carriers a higher redox potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.07.225 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!