Against the backdrop of energy shortage, hydrogen energy has attracted much attention as a green and clean energy source. In order to explore efficient hydrogen production pathways, we designed a composite photocatalyst with carbon-based core-shell photothermal-assisted photocatalytic system (Carbon@ZnInS, denoted as C@ZIS). The well-designed catalyst C@ZIS composites demonstrated a photocatalytic hydrogen precipitation rate of 2.97 mmol g h even in the absence of the noble metal Pt co-catalyst. The incorporation of carbon-based core-shell photocatalysts into a photocatalytic reaction significantly affects the activity of the reaction by triggering a photothermal effect in the reaction solution. The results of the physicochemical experiments demonstrated that the carbon spheres in C@ZIS composite system could provide a greater number of active sites, thereby accelerating the electron transfer and separation efficiency, and thus enhancing the photocatalytic activity. The study presents an efficacious design concept for the development of efficacious carbon-based core-shell photothermal-assisted photocatalysts, which is anticipated to facilitate the efficient conversion of solar energy to hydrogen energy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.08.048DOI Listing

Publication Analysis

Top Keywords

carbon-based core-shell
12
photothermal-assisted photocatalytic
8
hydrogen energy
8
core-shell photothermal-assisted
8
photocatalytic
5
energy
5
facile synthesis
4
synthesis hierarchical
4
core-shell
4
hierarchical core-shell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!