Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Denitrification, anammox, and DNRA are three important nitrogen (N) reduction pathways in estuarine sediments. Although salinity is an important variables controlling microbial growth and activities, knowledge about the effects of changing salinity on those three processes in estuarine and coastal wetland sediments are not well understood. Herein, we performed a 60-d microcosms experiment with different salinities (0, 5, 15, 25 and 35 ‰) to explore the vital role of salinity in controlling N-loss and N retention in estuarine wetland sediments. The results showed that sediment organic matter, sulfide, and nitrate (NO) were profoundly decreased with increasing salinity, while sediment ammonium (NH) and ferrous (Fe) varied in reverse patterns. Meanwhile, N-loss and N retention rates and associated gene abundances were differentially inhibited with increasing salinity, while the contributions of denitrification, anammox, and DNRA to total nitrate reduction were apparently unaffected. Moreover, denitrification rate was the most sensitive to salinity, and then followed by DNRA, while anammox was the weakest among these three processes. In other words, anammox bacteria showed a wide range of salinity tolerance, while both denitrification and DNRA reflected a relatively limited dynamic range of it. Our findings could provide insights into temporal interactive effects of salinity on sediment physico-chemical properties, N reduction rates and associated gene abundances. Our findings can improve understanding of the effects of saltwater incursion on the N fate and N balance in estuarine and coastal sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2024.116834 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!