Hemicellulose is key in determining the fate of plant cell wall in almost all growth and developmental stages. Nevertheless, there is limited knowledge regarding its involvement in the development and ripening of banana fruit. This study investigated changes in the temporal-spatial distribution of various hemicellulose components, hemicellulose content, activities of the main hydrolysis enzymes, and transcription level of the main hemicellulose-related gene families in banana peels. Both hemicellulose and xylan contents were positively correlated to the fruit firmness observed in our previous study. On the contrary, the xylanase activity was negatively correlated to xylan content and the fruit firmness. The vascular bundle cells, phloem, and cortex of bananas are abundant in xyloglucan, xylan, and mannan contents. Interestingly, the changes in the signal intensity of the CCRC-M104 antibody recognizing non-XXXG type xyloglucan are positively correlated to hemicellulose content. According to RNA-Seq analysis, xyloglucan and xylan-related genes were highly active in the early stages of growth, and the expression of MaMANs and MaXYNs increased as the fruit ripened. The abundance of plant hormonal and growth-responsive cis-acting elements was detected in the 2 kb upstream region of hemicellulose-related gene families. Interaction between hemicellulose and cell wall-specific proteins and MaKCBP1/2, MaCKG1, and MaHKL1 was found. The findings shed light on cell wall hemicellulose's role in banana fruit development and ripening, which could improve nutrition, flavor, and reduce postharvest fruit losses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2024.109025 | DOI Listing |
J Exp Bot
December 2024
Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.
Cellular signaling is a key component of both intra- and intercellular communication, playing a crucial role in the development of higher plants as well as in their responses to environmental conditions of both abiotic and biotic origin. In recent decades, molecules such as hydrogen peroxide (H2O2), nitric oxide (NO), hydrogen sulfide (H2S), and melatonin have gained significant relevance in plant physiology and biochemistry due to their signaling functions and their interactions, forming a comprehensive cellular communication network. The Solanaceae family of plants includes a group of horticultural crops of great global importance, for instance, tomatoes, eggplants, and peppers, which are of major agroeconomic significance due to their widespread cultivation and consumption.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Tobacco, Guizhou University, Guiyang, 550025, PR China.
Background: The degree of yellowing in tobacco leaves is an important indicator for determining the maturity and harvesting time of tobacco leaves. Decreasing chlorophyll levels helps speed up the ripening process of tobacco leaves for easier mechanical harvesting. Identifying and utilizing genes that regulate yellowing in tobacco leaves are crucial for developing tobacco varieties suitable for mechanized harvesting and understanding the molecular processes that control leaf color changes.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
September 2024
Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences Changchun 130112, China College of Pharmacy and Biological Engineering, Chengdu University Chengdu 610106, China.
To explore the difference in metabolism and transcription between seeds experiencing space flight and ground seeds after morphological post ripening, this study utilized ginseng seeds experiencing space flight and ground seeds as materials. Metabolomics and transcriptomics analyses were conducted using ultra-high performance liquid chromatography-mass spectrometry(UPLC-MS) and high-throughput transcriptome sequencing(RNA-seq) technologies, so as to identify differential terpenoid metabolites, differential endogenous hormones, and differentially expressed genes. The results showed that through metabolomics analysis, a total of 22 differential terpenoid metabolites were identified in the experimental and control groups, including chikusetsusaponin FK_7, ginsenoside F_2, ginseno-side K, majoroside R_1, ginsenoside Re_5, 12-hydroxyabietic acid, etc; through transcriptomics analysis, 15 differential terpenoid metabolism-related differentially expressed genes were identified in the experimental and control groups, including FCase, AACT, PMK, etc, and these genes were integrated into the pathway based on the MEP and MVA.
View Article and Find Full Text PDFFood Chem
December 2024
Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy. Electronic address:
A rapid and non-invasive mass spectrometry-based electronic nose (MS-eNose) method, combined with chemometric analysis, was developed for the early detection of Aspergillus westerdijkiae on caciocavallo cheeses during ripening process. MS-eNose analyses were carried out on caciocavallo inoculated with ochratoxin A (OTA) non-producing species and artificially contaminated with A. westerdijkiae, an OTA producing species.
View Article and Find Full Text PDFSmall
December 2024
Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Street, Pedion Areos, 38834, Greece.
Developing highly efficient biomass-derived carbon-based electrocatalysts remains challenging for urea electrolysis because most of these electrocatalysts show powder morphology, which can lead to Ostwald ripening during the reaction process, and its reaction mechanism should be further verified. Herein, self-supported lignin-derived carbon coupling NiO@MoNi heterojunction (NiO@MoNi/C) possesses superhydrophilic properties and electronic modulation, boosting the performance of urea electrolysis. Electrochemical results show that an indirect oxidation step for urea oxidation reaction (UOR) and Volmer-Heyrovsky mechanism for hydrogen evolution reaction (HER) occurs on the surface of NiO@MoNi/C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!