Degradation pathways and product formation mechanisms of asphaltene in supercritical water.

J Hazard Mater

Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety, China University of Petroleum (East China), Qingdao 266580, China. Electronic address:

Published: October 2024

Asphaltene is the compound with the most complex structure and the most difficult degradation in oily sludge, which is the key to limit the efficiency of supercritical water oxidation treatment of oily sludge. In this paper, the supercritical water oxidation process of asphaltene was investigated in terms of free radical reaction, degradation pathway, and product generation mechanism using ReaxFF molecular dynamics simulation method. The results showed that increasing temperature, increasing O, and increasing HO have different effects on HO·generation. Benzene rings undergo fusion and condensation through hydrogenation abstraction and oxygen addition reactions, subsequently breaking down into long-chain alkanes. Increasing O can effectively promote the ring-opening of nitrogen-containing heterocycles. -COOH is the most important intermediate fragment for CO and CO generation, and there is a reaction competition with -CHO and -CO. When the number of oxygen molecules increases from 300 to 700, the reaction frequency of -CHO and -CO to generate CO and CO increases by 17.14 % and 12.77 %·HO determines the production of H by controlling the number of H·radicals present. As the amount of HO increases from 500 to 1500, the product ratio of H increases from 12.73 % to 21.31 %. ENVIRONMENTAL IMPLICATION: Asphaltene is the most structurally complex organic matter in oily sludge, and its presence makes it difficult for oily sludge to be completely degraded by conventional treatment methods such as pyrolysis and incineration. Polycyclic aromatic hydrocarbons (PAHs) represented by asphaltene increase the carcinogenicity and mutagenicity of oily sludge, and even irreversibly pollute soil and groundwater. Supercritical water oxidation, as an efficient organic waste treatment technology, can realize harmlessness in a green and efficient way. So the study on the mechanism of supercritical water oxidation of asphaltene is of great significance for environmental protection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135488DOI Listing

Publication Analysis

Top Keywords

supercritical water
20
oily sludge
20
water oxidation
16
-cho -co
8
asphaltene
6
supercritical
5
water
5
oily
5
sludge
5
degradation pathways
4

Similar Publications

Ensuring long-term wellbore integrity is critical for carbon dioxide geological storage. Ordinary Portland cement (PC) is usually used for wellbore primary cementing and plug operation, and set cement is easily corroded by acidic fluids, such as carbon dioxide, in underground high-temperature and high-pressure (HTHP) environments, resulting in a decrease in the mechanical properties and an increase in permeability. In order to achieve long-term wellbore integrity in a CO-rich environment This study introduces materials such as thermosetting vinyl ester resin (TSR), filler composite resin (FCR), and low-cost resin cement (RC).

View Article and Find Full Text PDF

Curcumin, a compound known for its antioxidant and neuroprotective properties, faces challenges due to its low water solubility, which can limit its effectiveness. One effective method to address this issue is through amorphization. Incorporating curcumin into a polymeric matrix to form amorphous solid dispersions is a common approach.

View Article and Find Full Text PDF

Fruit seeds are often an underutilized side-stream of fruit processing. The most common approach to seed valorization is oil extraction due to the relative simplicity of the process. The partially or fully defatted seed meal is rarely further processed, even though seeds generally contain more protein and fiber than oil.

View Article and Find Full Text PDF

Spillway chutes are critical in dam flood control, particularly in high dams where high water heads and large discharge in narrow canyons amplify the demand for safe discharging. For large unit discharges in spillways, aeration protection is essential to prevent cavitation erosion, but challenges arise from air duct choking in the traditional spillway and nonaerated regions in the stepped spillway. This paper introduces a novel spillway called the pre-aerated stilling basin spillway (PSBS).

View Article and Find Full Text PDF

Supercritical CO, as an environmentally friendly and pollution-free fluid, has been applied in various EOR techniques such as CO flooding. However, the low viscosity of the gas leads to issues such as early breakthrough, viscous fingering, and gravity override in practical applications. Although effective mobility-control methods, such as CO WAG (water alternating gas)-, CO foam-, and gel-based methods, have been developed to mitigate these phenomena, they do not fundamentally solve the problem of the high gas-oil mobility ratio, which leads to reduced gas sweep efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!