Polyurethanes (PUs) are highly versatile polymers widely utilized across industries. However, chemical recycling of PU poses significant challenges due to the harsh conditions required and the formation of complex mixtures of oligomers upon depolymerization. Addressing this inherent lack of recyclability, we developed closed-loop recyclable PU materials by integrating cleavable acetal groups. We present a sustainable and scalable synthesis method for acetal-containing polyols (APs) through aldehyde-diol polycondensation, utilizing reusable heterogeneous catalysts. Three APs with different hydrolytic stabilities depending on the structure of acetal groups were synthesized from formaldehyde, acetaldehyde, and propionaldehyde with 1,6-hexanediol (H16). These APs were employed alongside 4,4'-methylene diisocyanate (MDI) for preparation of PU materials. The resulting PUs exhibited mechanical properties comparable to or surpassing those of conventional PUs, while demonstrating excellent recyclability under acidic conditions. Notably, hydrolysis of PU materials based on acetaldehyde-derived APs yielded remarkable monomer recovery rates, with 89 % for H16 and 84 % for 4,4'-methylenedianiline, a precursor to MDI. Furthermore, we successfully demonstrated closed-loop recycling by synthesizing APs from recovered H16, resulting in PU materials with identical properties to the original PU. This achievement highlights the potential for establishing a closed-loop recycling system for acetal-containing PUs, contributing to the advancement of a sustainable and circular economy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202401595 | DOI Listing |
PeerJ
January 2025
Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America.
Matrix population models are essential tools in conservation biology, offering key metrics to guide species management and conservation planning. However, the development of these models is often limited by insufficient life history data, particularly for non-charismatic species. This study addresses this gap by using life history data from FishBase and the FishLife R package, complemented by size-dependent natural mortality estimates, to parameterize age-structured matrix population models applicable to most fish species.
View Article and Find Full Text PDFAll-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates Li6PS5X (X = Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.
View Article and Find Full Text PDFJ Am Geriatr Soc
January 2025
The Global Brain Health Institute, University of California, San Francisco, California, USA.
Background: Dementia represents a growing healthcare challenge in the United States. The Care Ecosystem, an effective collaborative care model, bridges medical and social care needs for individuals with dementia. The purpose of this study was to describe how the Care Ecosystem has been disseminated and the lessons learned from this experience.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University, Changchun, Jilin 130024, China.
Through hydrogenation and N-N coupling, azobenzene can be produced via highly selective electrocatalytic nitrobenzene reduction, offering a mild, cost-effective, and sustainable industrial route. Inspired by the density functional theory calculations, the introduction of H* active NiP into CoP, which reduces the water dissociation energy barrier, optimizes H* adsorption, and moderates key intermediates' adsorption, is expected to assist its hydrogenation ability for one-step electrosynthesizing azobenzene. A self-supported NiCo@NiP/CoP nanorod array electrode was synthesized, featuring NiCo alloy nanoparticles within a NiP/CoP shell.
View Article and Find Full Text PDFBMJ Open Qual
January 2025
Rectorate, University of Health Sciences, Phnom Penh, Cambodia.
Rapid antigen diagnostic tests (Ag-RDTs) that quickly and accurately identify SARS-CoV-2 are an essential part of the COVID-19 response, but multiple factors can affect the validity of Ag-RDTs results. In Cambodia, several commercial Ag-RDTs have become available since the COVID-19 outbreak, but quality control (QC) and external quality assurance (EQA) of these rapid tests have yet to be fully and systematically implemented. We collaborated with laboratory experts in Australia and piloted an EQA programme of the commonly used COVID-19 Ag-RDTs at the University of Health Sciences' MERIEUX Laboratory (Tier 1 site-responsible for the in-country receipt and distribution of QA material) and four other participating laboratories (Tier 2-healthcare facility based) between November 2021 and November 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!