AI Article Synopsis

  • Therapeutic monoclonal antibodies (mAbs) for IV use need careful preparation and transportation to maintain product quality, which can be affected during vehicle transport.
  • This study developed three simulation methods (orbital shaker, reciprocating shaker, and vibration test system) to replicate vehicle transportation stresses and test their impact on mAb quality.
  • Findings showed that adding a small amount of polysorbate 80 (PS80) to the mAb solution helped stabilize it during transport, while the simulation methods had different effects on bubble formation and foaming compared to actual transportation.

Article Abstract

Therapeutic monoclonal antibody (mAb) products for intravenous (IV) administration generally require aseptic compounding with a commercially available diluent. When the administration site is located away from the preparation site, the prepared dosing solution may need to be transported in a vehicle. The impact of vehicle transportation on the product quality of mAbs needs to be evaluated to define safe handling and transportation conditions for dosing solutions. The design and execution of actual vehicle transportation studies require considerable resources and time. In this study, we systematically developed three different laboratory equipment-based methods that simulate vehicle transportation stresses: orbital shaker (OS), reciprocating shaker (RS), and vibration test system (VTS)-based simulation methods. We assessed their feasibility by comparing the impact on product quality caused by each simulated method with that caused by actual vehicle transportation. Without residual polysorbate 80 (PS80) in the mAb dosing solution, transportation via a cargo van led to a considerable increase in the subvisible particle counts and did not meet the compendial specifications for the light obscuration method. However, the presence of as low as 0.0004%w/v (4 ppm) PS80 in the dosing solution stabilized the mAb against vehicle transportation stresses and met the compendial specifications. Vehicle transportation of an IV bag with headspace resulted in negligible micro air bubbles and foaming in both PS80-free and PS80-containing mAb dosing solutions. These phenomena were found to be comparable to the VTS-based simulated method. However, the OS- and RS-based simulated methods formed significantly more micro air bubbles and foaming in an IV bag with headspace than either actual vehicle transportation or the VTS-based simulated method. Despite the higher interfacial stress (micro air bubbles and foaming) in the dosing solution created by the OS- and RS-based simulated methods, 0.0004%w/v (4 ppm) PS80 in the dosing solution was found to be sufficient to stabilize the mAb. The study shows that under appropriate simulated conditions, the OS-, RS-, and VTS-based simulated methods can be used as practical and meaningful models to assess the impact and risk of vehicle transportation on the quality of mAb dosing solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.4c00681DOI Listing

Publication Analysis

Top Keywords

vehicle transportation
36
dosing solution
20
mab dosing
16
dosing solutions
16
product quality
12
actual vehicle
12
simulated method
12
micro air
12
air bubbles
12
bubbles foaming
12

Similar Publications

In this study, a magnetic carboxymethylated β-cyclodextrin (Mag/CM-β-CD) was developed as a carrier system to assess its capability on drug delivery application by forming an inclusion complex with amantadine (Amn) as a drug model. The synthesized inclusion complex (Mag/CM-β-CD/Amn) was analyzed using various techniques, including FT-IR, XRD, BET, TGA, TEM, VSM, and DLS. The encapsulation efficiency and drug release study of Mag/CM-β-CD/Amn were adopted using the spectroscopic method.

View Article and Find Full Text PDF

Background: Ensuring uninterrupted and free access to health services highlights the critical need for sustainable health financing. Given that tax revenues are essential for achieving universal health coverage, this study, conducted in 2024, aims to identify strategies for generating sustainable financial resources through taxation.

Methods: This qualitative study gathered data through in-depth, semi-structured interviews with 10 experts.

View Article and Find Full Text PDF

Urban Air Transportation (UAT) encompasses private aircraft, air taxis, and specialized missions. These missions include aerial sightseeing, logistics transportation, emergency response, and anti-terrorism operations. They impose stringent requirements on advanced air mobility (AAM) aircraft.

View Article and Find Full Text PDF

Delayed atorvastatin delivery promotes recovery after experimental spinal cord injury.

Neurotherapeutics

January 2025

Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Spinal cord injury (SCI) significantly alters gene expression, potentially impeding functional recovery. This study investigated the effects of atorvastatin, a widely prescribed cholesterol-lowering drug, on gene expression and functional recovery in a chronic murine SCI model. Female C57BL/6J mice underwent moderate 0.

View Article and Find Full Text PDF

With the continuous development of intelligent transportation systems, traffic safety has become a major societal concern, and vehicle trajectory anomaly detection technology has emerged as a crucial method to ensure safety. However, current technologies face significant challenges in handling spatiotemporal data and multi-feature fusion, including difficulties in big data processing, and have room for improvement in these areas. To address these issues, this paper proposes a novel method that combines autoencoders, Mahalanobis distance, and dynamic Bayesian networks for anomaly detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!