Chronic electrophysiological recordings in rodents have significantly improved our understanding of neuronal dynamics and their behavioral relevance. However, current methods for chronically implanting probes present steep trade-offs between cost, ease of use, size, adaptability, and long-term stability. This protocol introduces a novel chronic probe implant system for mice called the DREAM (Dynamic, Recoverable, Economical, Adaptable, and Modular), designed to overcome the trade-offs associated with currently available options. The system provides a lightweight, modular and cost-effective solution with standardized hardware elements that can be combined and implanted in straightforward steps and explanted safely for recovery and multiple reuse of probes, significantly reducing experimental costs. The DREAM implant system integrates three hardware modules: (1) a microdrive that can carry all standard silicon probes, allowing experimenters to adjust recording depth across a travel distance of up to 7 mm; (2) a three-dimensional (3D)-printable, open-source design for a wearable Faraday cage covered in copper mesh for electrical shielding, impact protection, and connector placement, and (3) a miniaturized head-fixation system for improved animal welfare and ease of use. The corresponding surgery protocol was optimized for speed (total duration: 2 h), probe safety, and animal welfare. The implants had minimal impact on animals' behavioral repertoire, were easily applicable in freely moving and head-fixed contexts, and delivered clearly identifiable spike waveforms and healthy neuronal responses for weeks of post-implant data collection. Infections and other surgery complications were extremely rare. As such, the DREAM implant system is a versatile, cost-effective solution for chronic electrophysiology in mice, enhancing animal well-being, and enabling more ethologically sound experiments. Its design simplifies experimental procedures across various research needs, increasing accessibility of chronic electrophysiology in rodents to a wide range of research labs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/66867 | DOI Listing |
BMC Musculoskelet Disord
January 2025
Division of Orthopedic Surgery, Changhua Christian Hospital, Changhua, Taiwan.
Background: Despite advancements in prosthetic designs and surgical techniques, patellar dislocation remains a rare but significant complication following total knee arthroplasty, with an incidence ranging between 0.15% and 0.5%.
View Article and Find Full Text PDFBraz J Otorhinolaryngol
January 2025
World Health Organization, Department of Noncommunicable Diseases, Rehabilitation and Disability, Disability and Rehabilitation Unit, Geneva, Switzerland.
Objective: This review aims to analyse the implications of the World Health Organization's 2021 world report on hearing, with a particular focus on the cochlear implant field. The objective is to understand the challenges and opportunities highlighted in the report and propose viable solutions for effective implementation within the cochlear implant community.
Methods: Following the release of the World Health Organization's world report on hearing, cochlear implant professionals explored and discussed the implications of the report with examples from various countries to understand the disparities in access, reimbursement policies, and social stigma associated with hearing loss.
ACS Nano
January 2025
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.
View Article and Find Full Text PDFInt J Implant Dent
January 2025
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
Purpose: This study evaluated the accuracy of implant placement using a robotic system (Remebot) compared to freehand surgery and explored factors influencing accuracy.
Methods: This retrospective study included 95 implants placed in 65 patients, divided into robot-assisted (50 implants) and freehand (45 implants) groups. Platform, apical, and angular deviations were measured by superimposing preoperative plans and the postoperative CBCT images.
J Indian Prosthodont Soc
January 2025
Department of Prosthodontics, K M Shah Dental College and Hospital, Sumandeep Vidyapeeth, Vadodara, Gujarat, India.
Aim: The aim is to evaluate and compare stress distribution characteristics of ball, magnet, and positioned attachment systems in single and double implant-retained overdentures using the finite element method (FEM).
Setting And Design: In vitro (in silico study) finite element analysis (FEA).
Materials And Methods: A Styrofoam mandible with duplicated silicon mucosa was used to construct a mandibular complete denture.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!