Correction for 'Hybrid 2D perovskite and red emitting carbon dot composite for improved stability and efficiency of LEDs' by Amandeep Singh Pannu , , 2023, , 2659-2666, https://doi.org/10.1039/D2NR06942C.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr90152eDOI Listing

Publication Analysis

Top Keywords

perovskite red
8
red emitting
8
emitting carbon
8
carbon dot
8
dot composite
8
composite improved
8
improved stability
8
stability efficiency
8
correction hybrid
4
hybrid perovskite
4

Similar Publications

Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.

View Article and Find Full Text PDF

Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals.

View Article and Find Full Text PDF

Temperature Characterization of Perovskite LEDs by Electroluminescence.

Nano Lett

December 2024

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Article Synopsis
  • Despite advancements in perovskite light-emitting diodes (PeLEDs), maintaining high stability is still a significant issue due to heat production during operation, which accelerates device wear.
  • Current methods like infrared thermal imaging (ITI) primarily measure the temperature of the device's surface, leaving the internal temperature of the perovskite layer unexplored.
  • This research introduces an electroluminescence (EL) analysis technique, which allows real-time tracking of the perovskite layer's temperature, providing a straightforward and effective approach to assess the temperature of PeLEDs while they are in use.
View Article and Find Full Text PDF

Light-Triggered Reversible Assembly of Halide Perovskite Nanoplatelets.

Adv Mater

December 2024

Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.

Advancements in stimuli-driven nanoactuators necessitate the discovery of photo-switchable, self-contained semiconductor nanostructures capable of precise mechanical responses. The reversible assembly of 0D CsBiI halide perovskite nanoplatelets (NPLs) between stacked and scattered configurations are demonstrated under light and dark, respectively. This sunlight-triggered perpetual flipping of the NPLs, occurring in less than a minute, is associated with a color change between brown and red.

View Article and Find Full Text PDF

Pure red emission with spectral stability in full iodine-based quasi-2D perovskite films by controlling phase distribution.

Nanoscale

December 2024

School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

Quasi-2D perovskites have emerged as a promising candidate material for displays owing to their high photoluminescence quantum yields and low-cost solution synthesis. However, achieving pure red quasi-2D perovskite films with luminescence centered at 630 nm and a narrow emission band presents a critical challenge for high-definition displays. Herein, by incorporating 18-crown-6 as additives that simultaneously passivate defects and regulate phase distribution, full iodine-based quasi-2D perovskite films with a single red emission peak and spectral stability are designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!