Bacterial membrane vesicles (BMVs) are extracellular vesicles secreted by either Gram-positive or Gram-negative bacteria. These BMVs typically possess a diameter between 20 and 250 nm. Due to their size, when these BMVs are suspended in another medium, they could be constituents of a colloidal system. It has been hypothesized that investigating BMVs as colloidal particles could help characterize BMV interactions with other environmentally relevant surfaces. Developing a more thorough understanding of BMV interactions with other surfaces would be critical for developing predictive models of their environmental fate. However, this bio-colloidal perspective has been largely overlooked for BMVs, despite the wealth of methods and expertise available to characterize colloidal particles. A particular strength of taking a more colloid-centric approach to BMV characterization is the potential to quantify a particle's attachment efficiency (α). These values describe the likelihood of attachment during particle-particle or particle-surface interactions, especially those interactions which are governed by physicochemical interactions (such as those described by DLVO and xDLVO theory). Elucidating the influence of physical and electrochemical properties on these attachment efficiency values could give insights into the primary factors driving interactions between BMVs and other surfaces. This chapter details methods for the characterization of BMVs as colloids, beginning with size and surface charge (i.e., electrophoretic mobility/zeta potential) measurements. Afterward, this chapter will address experimental design, especially column experiments, targeted for BMV investigation and the determination of α values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-4055-5_3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!