Rice (Oryza sativa) is an important nutritional grain for the majority of Asian countries, but it is also a major source of cadmium (Cd) accumulation. A pot experiment was carried out to investigate the Cd uptake and translocation of high Cd (IR-50) and low Cd (White Ponni) rice cultivars in Cd-contaminated soils. The findings revealed that Cd impacts on rice development and growth differed depending on rice cultivars. Soil Cd levels in the seedling stage exceeded the critical levels (3-6 mg kg) only 5.0 mg kg Cd treatment for the IR-50 (7.47 mg kg). At higher Cd treatments (1.0 and 5.0 mg kg), morphometric characteristics and yield of grains showed a declining and increasing trend in both rice varieties, respectively. The accumulation of Cd was higher in soil and roots during seedling and tillering stages, whereas in booting and maturity stages increased in stems and leaves in IR-50 and WP rice varieties. Cd levels in rice grains above the maximum allowable limit (0.4 mg kg) only in IR-50 (0.51 mg kg) rice cultivar at maturity stage. The EF of Cd were classified as minor enrichment to 'moderate enrichment' in both rice cultivars. TF values exhibited > 1 in booting and maturity stages in both rice cultivars at higher Cd treatments. The study concluded that the IR-50 rice variety exhibited increased Cd intake and transported to various parts of rice plants, particularly grains. The findings indicate that WP rice cultivar is more resistant to Cd toxicity, reducing health hazards for persons who preferred the staple food rice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-024-02141-wDOI Listing

Publication Analysis

Top Keywords

rice cultivars
16
rice
15
rice varieties
12
uptake translocation
8
stages rice
8
higher treatments
8
booting maturity
8
maturity stages
8
ir-50 rice
8
rice cultivar
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!