Background: Our previous study indicated that Hcy exacerbated DSS-induced colitis by facilitating the differentiation of intestinal T helper cell 17 (Th17), but the precise mechanism remains unidentified. Therefore, our current research aims to elucidate the signaling pathway through which Hcy promotes the differentiation of Th17 cells.
Methods: BALb/c mice were randomly assigned into six groups. The model of mice colitis was induced using 3% DSS, while the model of Hyperhomocysteinemia was induced using 1.7% methionine. The concentrations of Hcy and prostaglandin E2 (PGE2) were measured using enzyme-linked immunosorbent assay (ELISA). The protein expressions of cytosolic phospholipase A2 (cPLA2), phosphorylated-cPLA2 (p-cPLA2), cyclooxygenase 2 (COX2), cyclic adenosine monophosphate (cAMP), signal transducer and activator of transcription 3 (STAT3), phosphorylated-STAT3 (p-STAT3), interleukin-17A (IL-17A), and retinoid-related orphan nuclear receptor-γt (RORγt) were assessed using western blot analysis.
Results: Compared to the DSS + HHcy group, the addition of the COX inhibitor did not significantly alter the protein expression of p-PLA2/PLA2, but led to significant decreases in serum PGE2 concentration, cAMP, and p-STAT3/STAT3 protein expression. The protein expressions of p-PLA2/PLA2, COX2, and cAMP upstream of STAT3 inhibitor addition did not exhibit significant changes. However, PGE2 concentration and p-STAT3/STAT3 protein expression were notably reduced. After the COX inhibitor and STAT3 inhibitor added, the protein expression of IL-17A and RORγt and the levels of IL-17A and IL-23R in CD4 T cells were significantly reduced.
Conclusion: HHcy aggravated DSS-induced colitis by promoting the differentiation and proliferation of Th17 cells through the PGE2 / STAT3 signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489288 | PMC |
http://dx.doi.org/10.1007/s10620-024-08588-2 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.
Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!