The terrestrial decomposition of remains and associated insect colonisation have been highly researched, and recently studies have expanded to investigate the aquatic decomposition of remains. However, there are instances where remains may experience both terrestrial and aquatic conditions simultaneously due to partial submersion in tidal areas, or influx or efflux of water caused by flood or drought. Decomposition and post-mortem interval (PMI) research to date has focused on remains wholly exposed to either terrestrial or aquatic environments, with limited consideration of dual simultaneous exposure. This study was conducted in artificial lentic environments to ascertain how simultaneous zones of terrestrial and aquatic environments on a single body may impact decomposition. Three trials were completed over a period of 12 months, with each trial consisting of 12 stillborn piglets; three partially submerged head exposed, three partially submerged abdomen exposed, three fully submerged aquatic controls and three terrestrial controls. Decomposition stage and rate were inferred from physical characteristics and insect activity. The decomposition rate of the exposed region of each piglet was significantly faster than the submerged region. The exposed zone of each was colonised by insects and reached skeletonization, whereas the submerged zone without orifice exposure had no insect activity and had a significantly slower decomposition rate. This indicated the ability to utilise terrestrial entomological approaches to estimate a minimum PMI for the exposed portion of the remains. However, without the ability to determine the amount of time the remains may have been submerged for, this estimation represents only a minimum PMSI, with the possibility the remains were submerged for a period of time without insect access and colonisation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12024-024-00871-y | DOI Listing |
Crit Rev Oncog
January 2025
Plant Pathology and Microbiology Laboratory, Regional Plant Resource Centre, Bhubaneswar, India.
Bacteria, fungi, and algae are examples of microorganisms that synthesize polysaccharides, which are macromolecules that belong to the carbohydrate class. Production of polysaccharides represents an alternative to chemical and plant-derived compounds that could be used for human well-being which requires implementation of different methods standardized during the extraction and purification process. In the current investigation, Pseudolagarobasidium acaciicola, a novel fungal source of exopolysaccharide (EPS) was used which produced 2773.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Engineering, Akdeniz University, 07058 Antalya, Turkey. Electronic address:
This study aimed to enhance inulinase production from agricultural biomass pretreated with deep eutectic solvents (DES) using Aspergillus niger A42 (ATCC 204447). Barley husk (BH), wheat bran (WB), and oat husk (OH) were selected as substrates and were pretreated using different molar ratios of choline chloride: glycerol (ChCl: Gly) and choline chloride: acetic acid (ChCl: AA). DES pretreatment was followed by dilute sulfuric acid hydrolysis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
Salmonids, classified as physostomous fish, maintain buoyancy by ingesting air to inflate their swim bladders. Long-term submergence has been shown to cause body imbalance and reduced growth performance in these fish. Previous studies have demonstrated that extended photoperiod can promote growth in salmonids.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Laboratório de Ecologia de Sedimentos, Instituto de Biologia, Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil.
Submerged or partially floating seagrasses in marine or brackish waters form productive seagrass beds, feeding grounds for a rich and varied associated biota, play key ecological roles in mitigating climate change and provide ecosystem services for humanity. The objective of this study was to perform a temporal quali- and quantitative analysis on the scientific production on seagrasses in the Atlantic Ocean during last 64 years (1960 to 2024) through defined workflow by scientometric analysis on Scopus database. Publications in this database date back to 1969, comprising a total of 3.
View Article and Find Full Text PDFISME J
December 2024
Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States.
Aqueous-soluble hydrocarbons dissolve into the ocean's interior and structure deep-sea microbial populations influenced by natural oil seeps and spills. n-Pentane is a seawater-soluble, volatile compound abundant in petroleum products and reservoirs and will partially partition to the deep-water column following release from the seafloor. In this study, we explore the ecology and niche partitioning of two free-living Cycloclasticus strains recovered from seawater incubations with n-pentane and distinguish them as an open ocean variant and a seep-proximal variant, each with distinct capabilities for hydrocarbon catabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!