We report the formation of photoluminescent two-dimensional (2D) crystalline nanosheet assemblies of gadolinium ions and ligand-stabilized gold nanoclusters (Gd-Au NCs). Transmission electron microscopy, selected area electron diffraction in conjunction with atomic force microscopy, and field-emission scanning electron microscopy analyses substantiated the 2D nature of Gd-Au NC nanosheets. The optical and magnetic properties of the nanosheets were investigated by photoluminescence measurements and vibrating-sample magnetometry analyses. The so-formed crystalline product was further utilized to generate a synchronous tricolor (orange, green, and blue) emission from a single excitation wavelength through an inorganic surface complexation reaction. The independent emissions were tunable after ligand functionalization by acetylsalicylic acid and fluorescein on the Gd-Au NC assembly. Interestingly, the assembled superstructure with augmented quantum yield led to white light emission at λ ≈ 325 nm with CIE of (0.34, 0.33) and CRI value of >85 in the liquid phase. Furthermore, the ability to modulate the luminescence properties through the surface complexation of the 2D nanosheets of Au NCs may bring about new avenues toward applications in light-emitting devices, sensing, and biomedical imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01888DOI Listing

Publication Analysis

Top Keywords

white light
8
light emission
8
electron microscopy
8
surface complexation
8
magneto-luminescent two-dimensional
4
nanosheets
4
two-dimensional nanosheets
4
nanosheets gadolinium
4
gadolinium gold
4
gold nanocluster
4

Similar Publications

Drug-assisted White Light Generation via Self-assembly.

Chem Asian J

January 2025

IISER Bhopal Department of Chemistry, Chemistry, Indore By-pass Road, Bhauri, 462066, Bhopal, INDIA.

White-light generation using small organic molecules has gained significant attention from researchers working on the interface of supramolecular chemistry and organic materials. Self-assembled multi-chromophoric materials utilizing a drug molecule and microenvironment-sensitive intramolecular charge transfer dye as an emitter offer the possibility of tunable emission. In this investigation, we focused on white light generation via the combination of a polarity-sensitive red-emitting styryl chromone (SC) and a blue-emitting anticancer and psychotherapeutic drug Norharmane (NHM) in a self-assembled micellar system.

View Article and Find Full Text PDF

A purple-pigmented (purple) rice seeds containing an anthocyanin, a major class of flavonoids, and their isogenic non-pigmented (white) seeds were exposed outside of the international space station (ISS) to evaluate the impact of anthocyanin on seed viability in space. The rice seeds were placed in sample plates at the exposed facility of ISS for 440 days, with the bottom layer seeds exposed to space radiation and the top layer seeds exposed to both solar light and space radiation. Though the seed weight of both purple and white seeds decreased after exposure to outer space, growth percentages after germination of purple and white seeds in the top layer were 55 and 15 %, respectively, compared to those in the bottom layer 100 and 70 %, respectively.

View Article and Find Full Text PDF

The study aimed to compare the effects of different types of excimer laser keratectomy on rabbit corneas and to identify the optimal disease model for corneal ectasia. Additionally, investigating the structural and molecular alterations in the novel disease model helped explore the mechanisms underlying biomechanical cues in corneal ectasia. 2.

View Article and Find Full Text PDF

Daytime radiative cooling (DRC) materials offer a sustainable, pollution-free passive cooling solution. Traditional DRC materials are usually white to maximize solar reflectance, but applications like textiles and buildings need more aesthetic options. Unfortunately, colorizing DRC materials often reduce cooling efficiency due to colorant sunlight absorption.

View Article and Find Full Text PDF

Plant factories with artificial lighting (PFALs) are a notable choice for urban agriculture due to the system's benefits, where light can be manipulated to enhance the product's yield and quality. Our objective was to test the effect of light spectra with different red-blue combinations and white light on the growth, physiology, and overall quality of three baby-leaf vegetables (green lettuce, kale, and pak choi) grown in a restaurant's PFAL. Leaf mass per area was lower under the most blue-containing treatments in all species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!