Anticancer drugs inhibit DNA replication by intercalating between DNA base pairs, forming covalent bonds with nucleotide bases, or binding to the DNA groove. To develop safer drugs, novel molecular structures with alternative binding mechanisms are essential. Stable boron hydrides offer a promising alternative for cancer therapy, opening up additional options like boron neutron capture therapy based on B and thermal neutron beams or proton boron fusion therapy using B and proton beams. These therapies are more efficient when the boron compound is ideally located inside cancer cells, particularly in the nucleus. Current cancer treatments often utilize small, polycyclic, aromatic, planar molecules that intercalate between ds-DNA base pairs, requiring only a spacing of approximately 0.34 nm. In this paper, we demonstrate another type of intercalation. Notably, [3,3'-Fe(1,2-CBH)], ([-FESAN]), a compact 3D molecule measuring 1.1 nm × 0.6 nm, can as well intercalate by strong non-bonding interactions preferentially with guanine. Unlike known intercalators, which are positive or neutral, [-FESAN] is a negative species and when an [-FESAN] molecule approaches the negatively charged DNA phosphate chain an anion-anion interaction consistently anti-electrostatic C-H⋯O-P bonds occurs. Then, when more molecules approach, an elongated outstandingly self-assembled structure of [-FESAN]-[-FESAN] forms moving anions towards the interthread region to interact with base pairs and form aggregates of four [-FESAN] anions per base pair. These aggregates, in this environment, are generated by C-H⋯O-C, N-H⋯H-B and C-H⋯H-B interactions. The ferrabis(dicarbollide) boron-rich small molecules not only effectively penetrate the nucleus but also intercalate with ds-DNA, making them promising for cancer treatment. This amphiphilic anionic molecule, used as a carrier-free drug, can enhance radiotherapy in a multimodal perspective, providing healthcare professionals with improved tools for cancer treatment. This work demonstrates these findings with a plethora of techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4tb01177eDOI Listing

Publication Analysis

Top Keywords

base pairs
12
intercalate ds-dna
8
cancer treatment
8
boron
5
cancer
5
compelling dna
4
dna intercalation
4
intercalation 'anion-anion'
4
'anion-anion' anti-coulombic
4
anti-coulombic interactions
4

Similar Publications

Xanthine nucleosides play a significant role in the expansion of the four-letter genetic code. Herein, 7-functionalized 8-aza-7-deazaxanthine ribo- and 2'-deoxyribonucleosides are described. 2-Amino-6-alkoxy nucleosides were converted to halogenated 8-aza-7-deazaxanthine nucleosides by deamination followed by hydroxy/alkoxy substitution.

View Article and Find Full Text PDF

Background: Structural variants (SVs), genomic alterations exceeding 50 base-pairs, are known for their significant impact on disease pathology. However, the role of SVs in Alzheimer's Disease (AD) remains unclear. Using a novel high-accuracy SV calling pipeline, we analyzed a diverse sample from the Alzheimer's Disease Sequencing Project (ADSP).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.

Background: We previously identified a 44-base pair deletion in (ATP-binding cassette sub-family A member 7) (ABCA7) that is significantly associated with Alzheimer's disease (AD) in African Americans (AA), producing a frameshift mutation resulting in a truncated protein (p.Arg578Alafs). ABCA7 is a lipid transporter across cellular membranes.

View Article and Find Full Text PDF

Introduction: Pharmacogenomic testing in psychiatry is an emerging area with potential clinical application of guiding medication choice and dosing. Interest has been fanned by commercial pharmacogenomic providers who have commonly marketed combinatorial panels that are direct-to-consumer. However, this has not been adopted widely due to a combination of barriers that include a varying evidence base, clinician and patient familiarity and acceptance, uncertainty about cost-effectiveness, and regulatory requirements.

View Article and Find Full Text PDF

Deprotonation of 8-Oxo-7,8-dihydroadenine Radical Cation in Free and Encumbered Context: A Theoretical Study.

ACS Omega

December 2024

State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China.

Due to the lower oxidation potential than natural nucleic acid bases, one-electron oxidation of DNA is usually funneled into the direction of intermediates for oxidized DNA damage like 8-oxo-7,8-dihydroadenine (8-oxoA) leading to a radical cation, which may undergo facile deprotonation. However, compared to the sophisticated studies devoted to natural bases, much less is known about the radical cation degradation behavior of an oxidized DNA base. Inspired by this, a comprehensive theoretical investigation is performed to illuminate the deprotonation of 8-oxoA radical cation (8-oxoA) in both free and encumbered context by calculating the p value and mapping the energy profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!